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Chapter 1
Introduction

Quantum mechanics distinguishes itself from classical physics via the presence
of entanglement. Classically, one is conditioned to imagine situations wherein
components of a single system may be separated into non-interacting parts, which
we can separately examine, and then put back together to reconstruct the full system.
This intuition fails spectacularly in quantum mechanics, since the separate pieces,
whilst non-interacting, could nevertheless be entangled. As Schrödinger put it quite
clearly [1]:

The best possible knowledge of a whole does not necessarily include the best possible
knowledge of all its parts, even though they may be entirely separate and therefore virtually
capable of being ‘best possibly known’, i.e., of possessing, each of them, a representative
of its own. The lack of knowledge is by no means due to the interaction being insufficiently
known – at least not in the way that it could possibly be known more completely – it is due
to the interaction itself.

This quintessential feature of the quantum world has been a source of great theo-
retical interest over the intervening decades. The initial debate about “spooky action
at a distance” consequent of the Einstein-Podolsky-Rosen (EPR) [2] gedanken
experiments involving entangled spins laid the foundations for more detailed
investigation in later years. With the passage of time, the advent of John Bell’s
seminal understanding of quantum correlations [3], and our improved understanding
of the physical implications, we now view the presence of entanglement as a
fungible resource in quantum systems, which can be exploited for several tasks. This
perspective has been immensely bolstered by the rapid development of the subject
of quantum information over the past few decades. An excellent resource for getting
acquainted with the subject is the classic textbook by Nielsen and Chuang [4].

The presence of quantum entanglement is cleanly exhibited by the simplest of
systems: two qubits. We have the total Hilbert space, which is a tensor product of
single qubit Hilbert spaces H D Hqubit ˝ Hqubit D Spanfj 00i j 01i; j 10i; j 11ig.

© Springer International Publishing AG 2017
M. Rangamani, T. Takayanagi, Holographic Entanglement Entropy,
Lecture Notes in Physics 931, DOI 10.1007/978-3-319-52573-0_1
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2 1 Introduction

The basis states are clearly separable, in that we can isolate each qubit individually
whilst leaving the other unaffected. On the other hand, the EPR/Bell/cat state

1p
2
.j00iC j11i/ ; (1.0.1)

doesn’t admit a separation into individual components that may be identified as
elements of one qubit or the other. More pertinently, the state of the two qubits is
correlated; knowing that the first qubit is in a particular state determines the state of
the second. Such non-separable states are said to be entangled.

While these ideas involving quantum entanglement are easy to illustrate and
intuit in simple systems involving a few qubits, it should be apparent that the
essential concepts continue to hold in continuum systems. In recent years, we
have come to appreciate that the entanglement structure encoded in a many-body
wavefunction provides important insight into the structure of the quantum state
under consideration. The simplest illustrative example is the notion of topological
entanglement entropy in .2 C 1/-dimensional topological field theories. These
are systems with no dynamical degrees of freedom, which nevertheless exhibit
interesting phase structure. It was realized in [5, 6] that the entanglement entropy
provides a useful order parameter for characterizing the distinct phases in such
systems. More generally perhaps, one can view modern efforts to characterize
the ground states of interacting many-body systems in terms of understanding
the potential entanglement structure of the wavefunctions (see, e.g., [7]). In the
continuum limit, when we focus on quantum field theories (QFTs), it is efficacious
to pass over from the many-body wavefunction to the wavefunctional localized onto
some spatial domain.

While the application of quantum entanglement to distinguish phases of many-
body dynamics would have been fascinating in its own right, a powerful connection
between gravitational dynamics and entanglement, which has emerged in the
context of holography, provides further reason to delve deeper into the subject. The
notion of holography in high energy physics connotes an important duality between
two disparately presented physical systems. On the one hand, one has a quantum
mechanical system of a familiar kind and on the other one has a theory of quantum
gravity, one in which the geometry itself fluctuates quantum mechanically. While
one would a-priori assume that these two situations are unrelated, the remarkable
gauge/gravity or AdS/CFT correspondence put forth by Maldacena nearly two
decades ago [8] suggests that they are two representations of the same physical
system in certain situations. This statement is usually codified by the statement
that “Quantum gravity in an asymptotically Anti de Sitter (AdS) spacetime is dual,
i.e., physically equivalent to a standard quantum field theory.” One heuristically
thinks of the QFT as living on the boundary of the AdS spacetime as a useful
mnemonic. Whilst this is appropriate for intuition building and setting up some of
the basic elements of the correspondence, it should be emphasized that the QFT is a
separate entity. Importantly, spacetime in which gravity operates is emergent from



1 Introduction 3

the collective dynamics of the quantum fields; the latter by themselves reside on a
rigid spacetime sans gravity.

The question which has been actively researched since the early days of the
AdS/CFT correspondence is how does the geometric picture emerge from the
QFT dynamics? What are the building blocks of the gravitational spacetime?
Surprisingly, the answer to these questions seems intricately tied to the entanglement
structure of the states of the QFT. The genesis of these ideas dates back to the
observation of Ryu-Takayanagi (RT) [9, 10], who proposed that the entanglement
entropy associated with a spatial region in a holographic QFT is given by the
area of a particular minimal area surface in the dual geometry. Inspired by this
claim, and its generalization by Hubeny-Rangamani-Takayanagi (HRT) [11] to
time-dependent states, Swingle [12] and Van Raamsdonk [13, 14] argued that the
essential building block of the spacetime geometry should somehow be related to
the entanglement structure of the quantum state in the QFT. This philosophy has
since been codified by Maldacena and Susskind [15] into the pithy epigram “ER
= EPR”, which refers to a geometric construct, the Einstein-Rosen bridge (ER),
being related to the entanglement structure suggested by the Einstein-Podolsky-
Rosen (EPR) gendanken experiment.

Our aim in this book is to provide a sampler of the developments in the
subject over the past decade, taking the reader on a tour through the quantum
entanglement landscape. It is to some extent remarkable that we have come to
appreciate (or perhaps re-appreciate) the central role played by this concept in the
context of quantum field theories. Our discussion will necessarily be eclectic—we
shall summarize salient developments in the subject which has played a role in
shaping our understanding of holography, but will elide over some of the discussion
of computing entanglement entropy in QFTs and its application to many-body
systems.

Synopsis of the Book The book is divided into four thematically distinct parts.

1. Part I describes how to think about entanglement in quantum mechanics and
QFTs and lays out the basic formalism we will need for our discussion. We
review the construction of density matrix elements and the computation of Rényi
and Von Neumann entropies and illustrate the general discussion with examples
from two-dimensional conformal field theories (CFTs).

2. Part II then turns to holography and describes the various ideas for computing
entanglement entropy in field theories which are amenable to such a holographic
description. To keep the discussion brief, we only give a rather quick review
of the holographic map between QFTs and their gravitational avatars. Later in
the book, we will describe in some detail under what conditions we expect the
holographic dual of a QFT to be given by classical gravitational dynamics. Our
primary goal here will be to give a working knowledge of the holographic entan-
glement entropy proposals and therefore will defray the conceptual questions for
subsequent discussion.

3. Part III focuses on recent studies of entanglement as a diagnostic of quantum
dynamics. We describe primarily applications which are easily amenable to



4 1 Introduction

holographic analysis such as quench dynamics and entanglement in the presence
of Fermi surfaces. The examples we have chosen illustrate the general lessons
we can learn about entanglement propagation in interacting quantum systems.

4. Part IV then turns to the developments which provide a direct link between
geometry and entanglement. This is a rapidly evolving area at the forefront
of current research focused on how we can use quantum entanglement in
field theories as underlying the holographic map; in the colloquial phrasing,
“entanglement builds geometry”. We will review at a heuristic level many of the
ideas that have been developed in the past few years, and also take the opportunity
to comment on some of the open issues. Given the rapid flux of ideas, we will try
to focus on those that we feel hold the most promise for future investigation, and
thus will not attempt to give a comprehensive survey. As part of the discussion,
we also take the opportunity to explain concepts from tensor networks which
have been suggested as useful toy models for understanding the holographic
dictionary.

Other Resources We list a series of references that the reader may wish to consult
for various concepts that will come up during the course of our discussion.

• Quantum Entanglement: A good review of the developments in quantum
entanglement from a foundational and operational perspective can be found in
[16], while [4] provides a good introduction to the concepts from a quantum
computational perspective.

• Entanglement in QFTs: A good introductory discussion about entanglement
entropy in quantum field theories can be found in [17]. Computational techniques
and results for two-dimensional conformal field theories are reviewed in [18].

• Holography: The original papers [8] which obtained the statement of the
correspondence, as well as the formulation of the map between the bulk and
boundary theories developed in [19, 20], are mandatory reading for any serious
student of the subject. As such, this a vast subject which is hard to review in
short order, but [21] does a great job of laying out the essentials despite dating
back to the genesis of the subject. Other reviews such as [22] provide a useful
complementary perspective. There is a recently published book [23] which could
be a valuable resource.

• Holographic entanglement entropy: The original papers [9] and [11] which
developed the holographic methods contain many examples and review other
salient features. A review of developments in holographic entanglement entropy
which includes most of the early developments is [24]. A more recent review
emphasizing the connection to gravity is [25].



Part I
Quantum Entanglement



Chapter 2
Entanglement in QFT

As presaged in Chap. 1, we will primarily be interested in understanding entan-
glement in holographic field theories. But before we get to this particular set of
quantum systems, it is useful to build some intuition in a more familiar setting.
In this and the next section, we will therefore focus our attention on getting some
insight into the concept of entanglement and learn some of the techniques which are
used to characterize it. The discussion here will also serve to build some technical
machinery which will be useful in the holographic context.

2.1 Entanglement in Lattice Systems

Let us begin our discussion of entanglement entropy in QFTs by first considering a
discrete problem. Imagine that we are given a lattice model, with degrees of freedom
localized on the lattice sites, cf., Fig. 2.2. The lattice spacing will be taken to be �.
For the present, we will assume that at each site we have a finite-dimensional Hilbert
space H˛ with ˛ indexing the sites. For instance, we can consider a single qubit per
site, so H˛ Š Hqubit for each value of ˛. A pure quantum state of the system then is
an element of the tensor product Hilbert space:

j‰i 2 ˝˛H˛ : (2.1.1)

We want to understand how a subset of the lattice degrees of freedom are
entangled with the rest in a given state of the above kind. Since we have the spatial
information of the lattice, we can do the following: we demarcate the lattice sites
into two sets by drawing a fiducial boundary across the lattice. We will label the
region within the boundary as A and the region outside as Ac and call the artificial
boundary, the entangling surface, @A (Fig. 2.1). We have ensured by this spatial

© Springer International Publishing AG 2017
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A

Ac

∂A

Fig. 2.1 A discrete latticized quantum system with a Hilbert space H˛ at every site. We have
indicated the region A by shading the enclosed sites while the unshaded area indicates Ac. We
take the lattice spacing to be �

decomposition a particular bipartitioning of the lattice Hilbert space:

˝˛H˛ Š HA ˝ HAc (2.1.2)

Now, given a bipartitioning of a Hilbert space into two separate tensor factors,
we can construct an operator that acts on one of the factors, say HA, by tracing out
the other (in this case Hc

A). This operator is the reduced density matrix �A and our
definition can be formalized as

�A D TrAc .j‰i h‰ j/ (2.1.3)

The definition here is in accord with the intuition of capturing the state of the
degrees of freedom in A assuming complete ignorance of what happens in Ac. If
the wavefunction for the state j‰i in question is factorized, then clearly one would
have a pure state in HA. The presence of quantum entanglement however leaves
open the possibility that the price we pay for our ignorance is that we end up with a
density matrix, i.e., a list of probabilities for the occurrence of various states in HA.

As presaged, we are interested in quantifying the amount of entanglement that
exists in j‰i partitioned as dictated by the spatial decomposition described above.
This can be gleaned from the von Neumann entropy of the reduced density matrix,
which is often referred to as the entanglement entropy. To wit,

SA D �TrA . �A log �A/ (2.1.4)
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The definition calls for taking the logarithm of the operator. In a finite system, one
can imagine explicitly diagonalizing the operator �A and obtaining its eigenvalues
�i. These are sometimes referred to as comprising the entanglement spectrum. In
terms of these, we have simply

SA D �
X

i

�i log�i (2.1.5)

It is also convenient to define another set of ‘entropies’ called the Rényi entropies
[26], which are simply defined in terms of the moments of the reduced density
matrix:

S.q/A D 1

1 � q
log TrA .�Aq/ D 1

1 � q
log

 
X

i

�
q
i

!
(2.1.6)

The canonical definition here requires that q 2 ZC, but we will see that oftentimes
it is efficacious to analytically continue the definition to q 2 RC. The rationale for
defining the Rényi entropies will become apparent soon when we discuss the replica
trick for computing entanglement entropy. The key point to note is the fact that if
we consider q ! 1, then the Rényi entropies converge to SA, i.e.,

SA D lim
q!1

S.q/A : (2.1.7)

As one might appreciate from their definition, the Rényi entropies capture the
moments of the reduced density matrix, and turn out to be very useful for probing
the purity of the system. Recall that a pure state density matrix is nothing but a
projection operator � Dj  ih j . If it is appropriately normalized Tr.� / D 1,
then one notes simply that Tr.�2 / D 1 again. However, if � is a mixed state, then
we expect that Tr.�2/ < 1, and thus the Rényi entropies provide a good measure of
quantum purity (despite being non-linear).

Since (2.1.7) requires us to have already explored the behaviour of Rényi
entropies away from positive integral values of the Rényi index q, it is convenient
to introduce another quantity, which we will call the modular entropy

QS.q/A D 1

q2
@q

�
q � 1
q

S.q/A

�
: (2.1.8)

This object was introduced in the holographic context in [27] motivated by the
intuition that it is closer to an entropy than the Rényi entropy S.q/A .

An analogy with classical thermodynamics is useful in understanding the
modular entropy QS.q/A . First note that the Rényi entropies have a close analogy to
the thermodynamic free energies at a temperature 1

q . This is best seen by defining
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the modular Hamiltonian

KA D � log �A : (2.1.9)

Whilst formal in its definition, owing to the non-linearity of the map from the
reduced density matrix to the modular Hamiltonian, we will have much use for this
concept. Now clearly, modulo the normalizing prefactor of 1 � q, we can view the
Rényi entropy as the modular free energy, since

S.q/A D 1

1 � q
log TrA

�
e�qKA

�
; (2.1.10)

involves modular evolution by an amount q, the inverse temperature. The modular
entropy can then easily be seen to be the derivative of the logarithm of the generating
function with respect to the inverse temperature.

QS.q/A D � 1

q2
@q

�
1

q
log TrA

�
e�qKA

��
(2.1.11)

The thermodynamic versions of these statements are the usual definitions:

F D �T logZ D � 1
ˇ

log Tr
�
e�ˇH� ;

S D �@F
@T

D �ˇ2 @ˇ
�
1

ˇ
log Tr

�
e�ˇH�

� (2.1.12)

Thus modulo a simple rescaling of the result with respect to the inverse temperature,
the modular entropy is appositely named as opposed to the Rényi entropy. It will turn
out that the modular entropy has a clean geometric interpretation in the gravitational
dual when we describe how these objects are realized in the holographic dual.

An important fact to keep in mind is that all of the aforementioned entropies are
defined in terms of traces and thus entirely determined by the eigenvalues of �A.
They are therefore insensitive to separate unitary transformations on �A or on �Ac .
The only way to change the entanglement is to simultaneously act with a unitary on
A [ Ac.

As before, let us assume that the total density matrix is given by a pure
state j‰ih‰j. The Schmidt decomposition j‰i D P

i �ij˛iiAjˇiiAc tells us that
non-trivial eigenvalues of �A are the same as those of �Ac . Therefore we find
TrA .�Aq/ D TrAc .�Ac

q/ and thus the equalities of entanglement entropies

S.q/A D S.q/Ac ; (2.1.13)

for any q. This clearly shows that the entanglement entropy does not show an
extensive property as opposed to thermodynamical entropy (see also Chap. 6),
despite the close similarities in the definition.
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2.2 Continuum QFTs

Having understood how to spatially bipartition a discrete lattice system, we now
can proceed to take the continuum limit by sending � ! 0. Furthermore, while
the discussion above assumed that the Hilbert space at each site was discrete, it is
clear that there is no obstruction to generalizing the analysis to non-compact Hilbert
spaces at each site. We henceforth will assume that this has been done.

Thence passing into the realm of local quantum field theories, we find that given a
wavefunctional‰Œˆ.x/� for the instantaneous state of the system, we can mimic the
previous construction to define �A and its associated entanglement measures. Here,
ˆ.x/ is a collective label for the collection of fields that characterize the system and
x is a set of spatial coordinates that describe the spatial location on a time-slice.

Intuitively it is clear that the construction involves ignoring the part of the
wavefunctional that corresponds to the spatial regionAc. The process of tracing over
the complementary region Ac amounts to integrating over all field configurations in
that domain, i.e., for x 2 Ac to obtain �A. Once we have the reduced density matrix,
we have to write down the operator log �A and attempt to compute SA. This is
clearly the trickiest proposition, since taking the logarithm of a continuum operator
involves a host of technical complications. The primary strategy we will adopt is to
learn how to obtain the entanglement entropy through suitable analytic continuation
of the Rényi entropies.

Let us first try to set up the basic ingredients for constructing the matrix elements
of the reduced density matrix. We assume that we have been handed a d-dimensional
relativistic QFT on some Lorentzian spacetime B, which we take to be globally
hyperbolic.1 For the most part, we can just consider the case where the background
is flat Minkowski spacetime, Bd D R

1;d�1, but the abstraction allows for a general
discussion. Since Bd is globally hyperbolic, we pick a Cauchy slice †d�1 which
is a (achronal) spacelike slice, defining in the QFT, a moment of simultaneity. On
†d�1 we then have a state of the system. This could be a pure state given by a
wavefunctional ‰Œˆ.x/�, or more generally a density matrix �† (x now defines a
coordinate chart on †d�1). We will give an explicit path integral construction of
such a state on †d�1 in Sect. 2.3.

The rest of the construction is now straightforward. We pick some spacetime
codimension-1 region A on the Cauchy slice, which allows for a spatial bipartition-
ing of the form A [ Ac D †d�1. The boundary of the region is, as before, the
entangling surface @A, which we note is a codimension-2 hypersurface in B. Since
we are working in the continuum, we anticipate UV singularities. These can be dealt
with by introducing an explicit UV regulator �. Geometrically we can view this in
terms of working in a tubular neighbourhood of @A of width �, which will serve

1As we will be primarily interested in relativistic systems, we will use d to indicate the total
spacetime dimension of the field theory. When necessary to explicitly distinguish the spatial
dimension, we will resort to the notation d D ds C 1, with ds denoting the number of spatial
dimensions.
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Fig. 2.2 A continuum QFT which has been spatially bipartitioned into two components on a
Cauchy slice †. We have indicated the region A and its complement Ac D †nA. The separatrix
is a spacetime codimension-2 surface, called the entangling surface

the purpose of regulating the short distance entanglement between the degrees of
freedom inside and outside of the entangling surface.

Our previous discussion would suggest that we now go ahead and decompose the
Hilbert space H of the QFT into HA˝HAc . For theories with no gauge symmetries,
this is indeed sufficient. However, when we have gauge fields we have to face up to
the problem of defining a separation of the Hilbert space into the tensor factors in a
gauge-invariant way. Unfortunately no such decomposition exists—this can be seen
by considering the lattice description of gauge fields. The basic operators are the link
variables, as opposed to the site variables we have considered so far. When we cut
the links as in Fig. 2.2, we have to decide where the broken link belongs, to HA or to
HAc , leading to an ambiguity. This has been much discussed in recent literature, cf.,
[28, 29, 30, 31]. Heuristically, one can imagine cutting the link variables along the
entangling surface, but making a particular choice whilst doing so as to whether the
said link degree of freedom belongs to HA or to HAc . We will often assume that a
particular such choice has been made on the lattice, leading to a specific prescription
for the continuum path integral we are about to describe.

The reduced density matrix �A WD TrHAc .�†/ captures the entanglement
between A and Ac as explained earlier. Once we have this operator, we can then
give a quantitative measure of the entanglement by computing the von Neumann
entropy as defined in (2.1.4).

In local relativistic QFTs, there is an important physical statement about causality
which will be useful for our discussions. Since† is a Cauchy slice, the future (past)
evolution of initial data on it allows us to reconstruct the state of the QFT on the
entirety of B. In other words, the past and future domains of dependence of † ,
D˙Œ†�, together make up the background spacetime on which the QFT lives, i.e.,
DCŒ†�[D�Œ†� D B. Likewise, the domain of dependence of A, DŒA� D DCŒA�[
D�ŒA�, is the region where the reduced density matrix �A can be uniquely evolved
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AD+[A]

D−[A]

D[A] = D+[A] ∪ D−[A]

D[A]D[Ac]

J+[∂A]

J−[∂A]

Fig. 2.3 An illustration of the causal domains associated with a region A, making manifest
the decomposition of the spacetime into the four distinct domains indicated in (2.2.1). Two
deformations A0 are also included for illustration in the right panel

once we know the Hamiltonian acting on the reduced system in A.2 So given a
state or a density matrix in some spatial domain, be it †d�1 or A, there is a unitary
operator which allows us to evolve this state within the corresponding domain of
dependence.

Now the domains of dependence of A and Ac by themselves do not make up the
full spacetime, DŒA� [ DŒAc� ¤ B. We have to account for the regions which can
be influenced by the entangling surface @A. Denoting the causal future (past) of a
point p 2 B by J˙.p/, we find that we have to keep track of the regions J˙Œ@A�,
which are not contained in either DŒA� or DŒAc�. As a result, the full spacetime B
decomposes into four causally-defined regions: the domains of dependence of the
region and its complement, and the causal future and past of the entangling surface:

B D DŒA� [ DŒAc� [ JCŒ@A� [ J�Œ@A� : (2.2.1)

This is illustrated in Fig. 2.3; the point to remember always is that codimension-2
spacelike surfaces like @A have a two-dimensional normal bundle with Lorentzian
metric signature. We can therefore always visualize them as a point in a two-
dimensional space, and then the concepts one is familiar with in spacetime diagrams
drawn in two-dimensional Minkowski spacetime. Further details and some more
formal statements can be found in [33].

The decomposition (2.2.1) is particularly convenient for formulating constraints
on entanglement entropy that follow from relativistic causality. If we unitarily
evolve the reduced density matrix �A, by transformations which are supported
solely on HA or on HAc , the eigenvalues of �A remain unaffected. Thus the Rényi

2The domains of dependence are causal sets which are determined simply where a given set of
points can communicate to or be communicated from, etc. For instance, DŒA� is defined as the set
of points in B through which every inextensible causal curve intersects A. A technical complication
to keep in mind is that we take A to be an open subset of †; consequently, DŒA� is an open subset
of B. We refer the reader to [32] for a discussion of these concepts.
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and von Neumann entropies are invariant under such unitary transformations. These
could include perturbations of the Hamiltonian and local unitary transformations
supported in the domains DŒA� or DŒAc�. Now consider a deformation of the spatial
region A, onto another region A0 lying on a different Cauchy slice †0, such that
DŒA� D DŒAc� (as indicated in Fig. 2.3). The state �†0 on the new slice is related by
a unitary transformation to the state �†. It is clear that such a transformation can be
constructed from operators localized in A, and so does not change the entanglement
spectrum of �A. We can of course make similar arguments for the complementary
region Ac.

Furthermore, if we fix the state at t ! �1, and consider perturbation to
the Hamiltonian supported in some region rıH , then by virtue of causality, we
can only affect the state in the causal future of this region. In other words, in
any region of the spacetime which does not intersect JCŒrıH �, our change has no
effect whatsoever. More pertinently, perturbations of this form can only affect the
entanglement spectrum when JCŒrıH� intersects J�Œ@A�. These perturbations will
influence both A and Ac and thus can be used to modify the entanglement. In
any other scenario, we can deform the region to pass to the past of perturbation
in rıH , thus leaving SA unaffected. By reversing the time ordering, if we fix the
state at t ! C1, the spectrum can be affected only by perturbations in JCŒ@A�. In
summary, we have the following properties of �A:

• The entanglement spectrum of �A depends only on the domain DŒA� and not on
the particular choice of Cauchy slice †. The spectrum is thus a so-called “wedge
observable” despite the fact that it is not, of course, an observable in the usual
sense.3

• Fixing the state in either the far past or the far future, the entanglement spectrum
of �A is insensitive to any local deformations of the Hamiltonian in DŒA� or
DŒAc�.

These are the crucial causality requirements that entanglement (and Rényi) entropies
are required to satisfy in any relativistic QFT.

2.3 Path Integrals and Replica

We have now given a formal definition of the reduced density matrix in continuum
QFTs. For computational purposes, however, it is most useful to eschew the operator
description in terms of wavefunctionals and pass directly to a functional integral
perspective. We will do so in a couple of steps: We will first construct a path integral
that computes the matrix elements of �A, taking care to ensure that we respect
the causality requirements described above. We will then see how to compute
the Rényi entropies by considering a functional integral on a “branched cover”

3To belabor the obvious, �A log �A is not a linear operator on the Hilbert space.
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geometry, and therefrom pass to the entanglement entropy itself by invoking an
analytic continuation.

Functional Integral for Reduced Density Matrix Elements Usually path inte-
grals in QFTs involve integrating over field configurations with various operator
insertions for computing observables. One is most familiar with such constructs for
Euclidean QFTs in which the observables we compute are Wightman functions. In
the Lorentzian context, one has to make a choice of temporal ordering which leads
to a multiplicity of correlation functions, and the path integrals should be engineered
to reflect this freedom. The Euclidean framework turns out to be most appropriate
when we consider static states for which the time evolution is trivial. More generally,
one may also invoke the Euclidean construct when the observable is computed at a
moment of time reflection symmetry, i.e., when we have instantaneous staticity.

Say we wish to define �A on a Cauchy slice †tD0 when there is no non-trivial
time evolution. Since we are singling out a region A, we should demarcate fields
into two sets ˆ.x/ D fˆA.x/; ˆAc.x/g by restricting their domains of support.
The reduced density matrix acts as an operator on HA. Its matrix elements may be
defined by their action on fields supported in A. To see this, let us imagine regulating
the path integral by imposing boundary conditions for fields in A as follows:

ˆA
ˇ̌
tD0�

D ˆ� ; ˆA
ˇ̌
tD0C

D ˆC : (2.3.1)

This is equivalent to cutting open the path integral in a restricted domain of space
at t D 0˙ and projecting the result onto definite field values. This is easily achieved
by introducing a delta functional into the path integral. Thus,

.�A/�C D
Z
ŒDˆ� e�SQFT Œˆ� ıE.ˆ�A/

ıE.ˆ�A/ � ı .ˆA.t D 0�/ �ˆ�/ ı
�
ˆA.t D 0C/ �ˆC

�
; (2.3.2)

where we introduce, for convenience, a shorthand for the delta-function which is
inserted into the path integral to extract the elements of the density matrix—it
may equivalently be thought of as a functional representation of a projector. See
Fig. 2.4 for an illustration of the geometry in two-dimensional theories for a time-
independent state.

For states with non-trivial time dependence, the above needs modification. One
cannot use the information about the entire spacetime without violating the causality
requirement. If we want to know the elements of �A.t/, we should not be making
use of the wavefunctionals at later times t0 > t. The canonical way to deal with this
situation is to use the Schwinger-Keldysh framework [34, 35].4 The essential idea is
to consider evolving initial conditions from the time the state of the quantum system

4This is also known as the closed time-path formalism or the in-in formalism. A closely related
discussion for open quantum systems appears in [36].
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A+

A−

x

tE

Fig. 2.4 The Euclidean geometry for computing the matrix elements of the reduced density matrix
�A. We have sketched the situation in two-dimensional Euclidean space as indicated. The two cuts
at A have been separated in an exaggerated manner to indicate the boundary conditions we need
to impose, cf., (2.3.2)

t

A

∂A

Ac

ΣtΣt

t

Fig. 2.5 The Schwinger-Keldysh geometry for computing the matrix elements of the reduced
density matrix �A in time-dependent settings. On the left panel, we show the general contour
which involves a time-fold at the Cauchy surface of interest. On the right panel, we illustrate the
opening out of the path integral at A to allow for the appropriate past/future boundary conditions
(2.3.3)

is prepared up until the instant we wish to compute the reduced density matrix. So
one considers the causal past of the Cauchy slice J�Œ†tD0�, but instead of evolving
forward from there on, one retraces the evolution back to the initial state. Intuitively,
this forward-backward evolution serves to cancel out unknown information of the
final state of the evolution from the computation. See Fig. 2.5 for an illustration.

The Schwinger-Keldysh contour provides a path integral prescription for com-
puting any real time process, and as such the path integral with two copies
of J�Œ†tD0� glued together on the Cauchy surface of interest constructs for us
the instantaneous state of the system (by projecting as usual onto definite field
configurations). One may either view this as a single copy of the system living on
a complex contour, or more simply by viewing the forward and backward evolution
as two different copies of the same system. This doubling of degrees of freedom is a
central feature of Schwinger-Keldysh path integrals. The reader may find the classic
references [37, 38] useful (see also [39, 40] for a novel perspective).
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To obtain the reduced density matrix elements, we cut open the functional
integral around A and impose boundary conditions just above and below as
in (2.3.1). One can then write the time-dependent reduced density matrix elements
as

.�A/�C D
Z

J�Œ†t �

ŒDˆR�ŒDˆL� e
i SQFT ŒˆR��i SQFTŒˆL� ıL

�
ˆ�C

RLI A
�

ıL

�
ˆ�C

RLI A
�

� ı .ˆR;A.t D 0�/�ˆ�/ ı
�
ˆL;A.t D 0C/ �ˆC

�
: (2.3.3)

We have adopted the view that we have two copies of our system with fields
labeled L and R, respectively. The right fields are evolved forward in time from
the initial state to the Cauchy slice, while the left fields are evolved backwards from
the Cauchy slice back to the initial state. This is the origin of the relative sign in
the action (in which we have also restored the factors of i relevant for a real-time
computation).

Functional Integral for Powers of the Reduced Density Matrix Once we have
constructed a functional integral to compute the matrix elements of �A, it is
straightforward to multiply these so as to obtain the matrix elements of its powers
.�A/

q. The method used to effect this computation is called the replica method,
since we replicate the computation described above a number of times.

The computation of matrix elements of .�A/q is achieved by taking q-copies
of the functional integral computing �A and making some identifications. Matrix
multiplication requires that we integrate over the boundary conditions for the C
component in the kth density matrix with the � component of the .k C 1/st density
matrix, i.e., ˆ.k/C D ˆ.kC1/� . For the static situation, we may thus write

.�A/
q
�C D

Z q�1Y

jD1
dˆ.j/C ı.ˆ

.j/
C �ˆ.jC1/� /

�
� Z qY

kD1
ŒDˆ.k/�

	
e�Pq

kD1 SQFT Œˆ
.k/� ıE.ˆ

.k/
�A/


�
(2.3.4)

The outer integral over the boundary conditions with the delta functions serves
to perform the desired identifications of the reduced density matrix elements. The
inner functional integral simply replicates the path integral computing the individual
matrix elements. We illustrate this path integral contour in Fig. 2.6.

Similarly for the time-dependent states, we would identify the boundary condi-
tions at t D 0C of the kth density matrix with those of the t D 0� pertaining to the
.k C 1/st density matrix. We should now allow for the fact that the ˙ components
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A+

A−

A+

A−

A+

A−

Fig. 2.6 The Euclidean geometry for computing the matrix elements of powers of the reduced
density matrix �A and trace thereof, pictorially depicting (2.3.4). We have illustrated the situation
in which we glue three copies of the replicated path integrals to construct �A3 matrix elements with
the identifications between boundary conditions on the replica copies indicated by the arrows. The
final trace to compute the third Rényi entropy is indicated by the dotted line

correspond to the left and right Schwinger-Keldysh fields, respectively. So instead
of (2.3.4), we end up with a more complicated expression, cf., Fig. 2.7.

.�A/
q
�C D

Z q�1Y

jD1
dˆ.j/LC ı.ˆ

.j/
LC �ˆ

.jC1/
R� /

�
� Z qY

kD1
ŒDˆ.k/�

	
e�Pq

kD1 SQFT Œˆ
.k/� ıL.ˆ

�C .k/
RLI A /


�
(2.3.5)

While the expressions looks quite complicated written out this way, it is much
simpler to visualize the path integral construction pictorially. We should view each
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∂AAc A

τ2

τ2 + 2πi

∂AAc A

∂AAc A

τ3

τ3 + 2πi

τ1

τ1 + 2πi

Fig. 2.7 The generalized Schwinger-Keldysh geometry for computing the matrix elements of
powers of the reduced density matrix �A and trace thereof, pictorially depicting (2.3.5). We have
illustrated the situation in which we glue three copies of the replicated path integrals to construct
.�A/3 matrix elements with the identifications between boundary conditions on the replica copies
indicated by the arrows

copy of �A as being computed on a copy of the background spacetime. This is B for
the Euclidean computation or two copies of J�Œ†t� � B joined together along the
Cauchy slice for the real-time Lorentzian computation.5 The geometric picture is
then comprised of taking q copies of these manifolds (or parts thereof) and making
identifications across them as prescribed by (2.3.4) and (2.3.5) respectively. This
is illustrated for the two cases of interest in Figs. 2.6 and 2.7, respectively. One
can equivalently think of the q-copies of B with the prescribed identifications as
constructing a new manifold Bq. Following a canonical construction in topology,
we will refer to Bq as the q-fold branched cover over B (or BLor).

In either case, we now can compute the path integral of the theory by integrating
over all the fields living on the background Bq. We define this as being

ZqŒA� D Tr .�Aq/ � ZŒBq� : (2.3.6)

From here we can extract the Rényi entropies via

S.q/A D 1

1 � q
log .Tr .�Aq// D 1

1 � q
log

� ZqŒA�
Z1ŒA�q

�
� 1

1 � q
log

�ZŒBq�

ZŒB�q

�
:

(2.3.7)

5When it is necessary to distinguish this construction, we will refer to the Lorentzian geometry
with an explicit subscript, viz., BLor.
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From Replica to Entanglement Entropy We now have functional integrals that
compute matrix elements of arbitrary integer powers of the density matrix. Taking
the trace, which now simply involves identifying ˆ.1/� with ˆ.q/C for the Euclidean
computation, we get the Rényi entropies defined in (2.1.6).

One important element of the replica computation is that the cyclicity of the
trace translates into a cyclic permutation symmetry amongst the various copies of
the functional integral. The Euclidean path integral then has a cyclic Zq symmetry
acting on its components. The Lorentzian computation on the other hand has 2q-
copies of the background geometry, but these are sewn together respecting the cyclic
Zq symmetry. We will refer to this symmetry as the replica symmetry.

We will note here that the Euclidean computation also has a time translation
symmetry, part of which is a time-reflection Z2 symmetry. In general, to work with
the simpler Euclidean functional integral, it suffices that we have such a discrete
symmetry; one does not require full time independence. More physically, we can
employ (2.3.4) whenever the state in question is at a moment of time reflection
symmetry. The reason to bring this up is that some authors choose to combine this
with the cyclic symmetry and refer to the resulting dihedral group D2d D Zq Ë Z2

as the replica symmetry. We choose not to do so, since it is only the Zq that remains
relevant for a general real-time computation.

To get the entanglement entropy itself, we are going to invoke (2.1.7), which
requires us to take the q ! 1 limit of the Rényi entropies thus computed. Now,
having a function only at integer values does not in general allow one to analytically
continue the argument to real values. A case in point is the function sin.�z/ that
vanishes at integer z, which not only exemplifies the situation, but also provides a
resolution. Functions defined on integers which, in a addition, are well-behaved as
z ! ˙i1 allow for a unique analytic continuation away from the integers. This is
the content of Carlson’s theorem, which may be derived in turn from the Phragmén-
Lindelöf principle. The theorem requires that the functions do not grow rapidly at
imaginary infinity; as long as the growth is sub-exponential, one is guaranteed a
unique analytic continuation. By bounding the behaviour of the function in certain
directions, these results assert that the function itself is bounded in the complex
plane, which then allows for a unique analytic continuation.

So as long as we are able to physically argue that the Rényi entropies are well-
behaved, one could be assured of a well-defined entanglement entropy using the
replica trick.6 In any event, from a physical viewpoint one should attempt to take
the analytic continuation seriously and see whether the results are sensible. Failure
of the replica construction usually implies that there are some interesting physical
phenomena to be understood. We will take the perspective that the replica trick
suffices, and for the most part our discussion will focus on circumstances in which
the results thus derived make physical sense.

6There are some other pitfalls, which we will get to later. For instance, the replica symmetry may
itself be broken dynamically.
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2.4 General Properties of Entanglement Entropy

Having understood the basic definition of entanglement entropy in continuum
quantum field theories, we can now ascertain some general features that one expects
this quantity to have. We will give a brief discussion of the sensitivity of this quantity
to the short distance physics first and then turn to a general set of inequalities
that we expect it to uphold. We will later have occasion to contrast these with the
corresponding behaviour in holographic systems.

2.4.1 UV and IR Properties

Firstly, we should note that the quantity as defined is UV divergent and thus needs
to be regulated. This follows from the fact that any state in a local QFT has
short-range correlations in the ultra-violet (UV). Furthermore, the definition of �A
requires us to consider partitioning the system across an entangling surface, and we
should thus anticipate the correlations of modes right across this to contribute to
the entanglement entropy in a significant manner. One essentially needs to look at
the modes within a cut-off distance from the entangling surface and ascertain their
contributions which will be divergent.

Intuitively, we expect the divergence to be proportional to the number of EPR
pairs that straddle the entangling surface. This would predict a sub-extensive
behaviour of entanglement, for the leading contribution would be proportional to
the area of the entangling surface. This intuition was one of the primary reasons
for the initial focus on this quantity [41] to draw analogy with the behaviour of the
Bekenstein-Hawking entropy for black holes.

In d-dimensional free field theories, we can indeed show that the leading
divergent terms in the UV limit � ! 0 obey the area law [42, 41]:

SA D �
Area.@A/
�d�2 C � � � ; (2.4.1)

where we omitted less divergent terms denoted by the ellipses. As anticipated on
physical grounds, this leading divergent term is proportional to the area of the
boundary of the region A and not extensive in the size of A. The coefficient �
depends on the specifics of field theory; one can argue that it is proportional to the
number of fields, i.e., scales with the number of degrees of freedom.

One can give general arguments to show that the structure of the subleading
terms depends on the intrinsic and extrinsic geometry of the entangling surface @A.
In general, one can argue that for states in the Hilbert space of a relativistic QFT,
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the UV behaviour takes the form:

SA D

8
<̂

:̂

ad�2
�
L
�

�d�2 C ad�4
�
L
�

�d�4 C � � � C a1
L
� C .�1/ d�1

2 SA C O.�/ ; d odd

ad�2
�
L
�

�d�2 C ad�4
�
L
�

�d�4 C � � � C .�1/ d�2
2 SA log

�
L
�

�
C O.�0/ ; d even

(2.4.2)

where L is a proxy for the size of the region A. The difference in the behaviour
of odd and even-dimensional CFTs can be traced back to the structure of the UV
divergences in the theory. While most of the coefficients ai in the above expansion
are scheme-dependent and hence not individually meaningful, we should emphasize
that non-trivial information is contained in the universal piece denoted by SA. This
term captures useful information about the conformal anomalies in the theory and
plays an important role in the entanglement-based results on renormalization group
flow [43, 44, 45, 46, 47]. We will have occasion to discuss these developments in
Chap. 10.

We should note that the above structure is inferred from holographic- and
anomaly-based considerations. While it is rather intractable to do explicit compu-
tations of entanglement entropy of interacting field theories (with the exception
of holographic theories), there is a rigorous derivation of area law for gapped
interacting systems for d D 2 [48]. However, holographic results strongly suggest
that the area law (2.4.1) should hold for any field theory with a UV fixed point for
d > 2.

A special case of note are two-dimensional conformal theories (d D 2), for
which (2.4.2) predicts only a logarithmic divergence and therefore fails to follow
an area law. In this exceptional case, it can be understood heuristically that the
logarithm arises as a limiting case of a power law divergence and is consistent with
the entangling surface that is comprised of a set of disconnected points.

To conclude this discussion, we also wish to highlight a semantic point regarding
terminology. It is common in many-body systems to talk about states having area
law entanglement versus those that have volume law entanglement. This statement
refers to the infra-red properties, i.e., the scaling with L in (2.4.2) above with a fixed
UV cut-off �. We will return to this issue in the course of our discussion, but for
now make note of the fact that we would say that a state has

• area-law entanglement if SA � Ld�2 at fixed �,
• volume-law entanglement if SA � Ld�1 at fixed �.

Typically, vacuum or ground states of a system exemplify the former behaviour,
while highly excited or thermal states exemplify the latter. Note that in the latter
case we would encounter an IR scale, e.g., in thermal states the SA D .LT/d�1 with
UV cut-off held fixed. One can also have states with intermediate behaviour (e.g.,
logarithmic scaling). For instance, fermionic systems with Fermi surfaces SA �
Ld�2 log.kFL/ are usually referred to as a logarithmic violation of the area law owing
to the presence of a new IR scale, the Fermi momentum kF . We refer the reader to
[49] for a heuristic discussion of potential IR behavior in diverse physical systems.
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2.4.2 Entropy Inequalities

By virtue of its definition as the von Neumann entropy of a reduced density matrix,
the entanglement entropy satisfies a set of very general inequalities. We will refer
to these as the quantum inequalities. We give a brief discussion of these in the
following, and refer the reader to the original references [50, 51, 52] and the recent
mathematical review [53] for details.

To describe these inequalities, we will need to consider a state which allows
partitions into multiple sets. In quantum mechanics or lattice systems, we can
imagine these sets to be components of a larger Hilbert space obtained by taking
tensor products of simpler systems. In continuum QFT, we will imagine that each of
the components refers to a particular subregion of the Cauchy slice.7 We will take
these regions (or, in general, subsystems) to be labeled as Ai and A D [i Ai. With
this understanding, we will talk about partitions of the state in the Hilbert space
H D ˝iHAi etc. We will also adapt a shorthand whereby A1A2 D A1 [ A2. For
example �A1A2 will be an operator on HA1 ˝ HA2 obtained perhaps by tracing out
the part of the system in .A1A2/

c and its entropy will be SA1A2 etc. We now list the
salient entropy inequalities that will be relevant for our discussion.

• The simplest of the inequalities is subadditivity. For a bipartite system HA1 ˝
HA2 we have

SA1 C SA2 � SA1A2 : (2.4.3)

In QFTs, this is often trivially satisfied for overlapping regions, i.e., A1\A2 ¤ 0,
owing to the fact that the UV divergent area term on the l.h.s overwhelms that on
the r.h.s. It does however remain more generally true and prompts the definition
of mutual information for such a bipartite system

I.A1 W A2/ D SA1 C SA2 � SA1A2 � 0 : (2.4.4)

• A useful inequality which can be derived by appending a third system A3 and
purifying �A1A2 is the Araki-Lieb inequality. This is usually stated directly for
bipartite systems in the form

j SA1 � SA2 j	 SA1A2 : (2.4.5)

Note that if A1A2 makes up the entire system which is known to be pure, i.e.,
A2 D Ac

1 then we can immediately conclude that SA D SAc .
Rather curiously, this inequality has never been directly proved; known proofs
derive it as a consequence of the subadditivity inequality using purification. One

7Once again modulo the fact that we need to supply suitable caveats to discuss theories with gauge
invariance in which spatial regions do not necessarily allow for such a factorization.
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can combine it with the latter to bound the entropy of the joint region A1A2, i.e.,

j SA1 � SA2 j	 SA1A2 	 SA1 C SA2 (2.4.6)

In this form, the two inequalities serve to bound SA1A2 � maxfSA1 ; SA2g which
should be familiar from classical monotonicity.

• The most interesting quantum inequality is strong subadditivity [51, 52], which
places interesting constraints on potential entropy functions. It encodes in a
certain heuristic sense the idea that SA is a concave function. There are many
useful ways to state the inequality; we will choose to do it for a tripartite system
H D HA1 ˝ HA2 ˝ HA3 . One has

SA1A2 C SA2A3 � SA1A2A3 C SA2 ; (2.4.7)

SA1A2 C SA2A3 � SA1 C SA3 : (2.4.8)

The second of these follows from the first by purification. These inequalities
are valid as long as the inner product between the states of the Hilbert space is
positive and thus relies on the underlying quantum system being unitary.

2.5 Relative Entropy

One other quantity of interest in our discussion is the notion of relative entropy.
Given two density matrices � and � , we can define an object S.�j�/, which provides
a measure of distinguishability between them. It is defined as

S.�jj�/ D Tr .� log �/� Tr .� log �/ : (2.5.1)

A detailed discussion of relative entropy from a quantum information perspective
can be found in [54, 55].

It satisfies two important properties: positivity and monotonicity. The former
simply asserts that the relative entropy is non-negative for any two density matrices
and vanishes only when the two are equal, i.e.,

S.�jj�/ � 0 ; S.�jj�/ D 0 H) � D � : (2.5.2)

This basic property can be understood from the fact that if we assume f .x/ is a

concave function, i.e., d2f
dx2

	 0, then we have

Tr
�
f .�/ � f .�/ � .� � �/f 0.�/

� 	 0 : (2.5.3)

Indeed, if we now set f .x/ D �x log x, we immediately find S.�jj�/ � 0.
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Monotonicity of relative entropy is the statement that relative entropy decreases
under inclusion. Say we start with a pair of reduced density matrices �; � and trace
out the same degrees of freedom to obtain reduced density matrices �A; �A. Under
this process the relative entropy is reduced:

S.�Ajj�A/ 	 S.�jj�/ ; �A D TrAc .�/ ; �A D TrAc .�/ : (2.5.4)

A proof of this statement can, for instance, be found in [4].
There is a useful way to rewrite the relative entropy result in a manner

reminiscent of thermodynamic formula. Let us treat � as the reference state and
introduce its modular Hamiltonians K� as defined in (2.1.9). We can use this to
define the modular free energy

F.�/ D Tr .�K� / � S.�/ ; (2.5.5)

where S.�/ is the von Neumann entropy of the density matrix. Using this, it is easy
to see that

S.�jj�/ D Tr .� log�/ � Tr .� log �/C Tr .� log �/ � Tr .� log�/

D �S.�/C S.�/ � h � log� i� C h � log� i�
D F.�/� F.�/

(2.5.6)

We can further express this as the difference modular Hamiltonian expectation value
and that of the entropies, viz.,

S.�jj�/ D 	hK� i �	h S i � 0 (2.5.7)

where the positivity of relative entropy guarantees the last inequality.
While the relative entropy is not symmetric in its arguments, it can be used as a

distance measure for states that are in the neighbourhood of each other. Consider a
reference state � D �0 and let � D �0C� �1C�2 �2C� � � be a one-parameter family
of states in its neighbourhood. We can evaluate the relative entropy as a power series
in �.

The first observation to make is that the relative entropy is at least quadratic in
the deviation parameter �: S.�jj�/ D O.�2/. The contribution to relative entropy at
O.�/ vanishes for any choice of �0. This means:

ıS D ıhK�0 i : (2.5.8)

Thus, while in general the change in entanglement entropy is only bounded by the
change in the modular Hamiltonian, to linear order in the deformation, the inequality
is saturated. This statement is known as the first law of entanglement [56], owing
to its similarity to the thermodynamic expression dE D T dS (cf., also Sect. 8.1,
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especially Eq. (8.1.11) there). It has played an important role in holographic context,
as we shall describe in Chap. 13.

At the quadratic order in � we find the relative entropy can be used to define a
positive definite inner product on the perturbations to the reference density matrix,
via

S.�0 C � �1jj�0/ � �2 h �1 ; �1 i�0
D 1

2
�2 Tr

�
�1

d

d�
log.�0 C � �1/

�
(2.5.9)

This quadratic function is non-negativity definite owing to the positivity of relative
entropy and is known as the quantum Fisher information. Recently various authors
have used the relative entropy to derive interesting holographic constraints, cf.,
Chap. 13.



Chapter 3
Entanglement Entropy in CFT2

The description of the general methodology for computing entanglement entropy in
Chap. 2 gives a clean, albeit abstract prescription. As with any functional integral,
it helps to develop some intuition as to where the computation can be carried out
explicitly. For a general QFT in d > 2 the computation appears intractable in all
but the simplest of cases of free field theories [42]. However, it turns out to be
possible to leverage the power of conformal symmetry in d D 2, to explicitly
compute entanglement entropy in some situations [18]. In fact, the revival of interest
in entanglement entropy can be traced to the work of Cardy and Calabrese [57] who
re-derived the results of [58] and went on to then explore its utility as a diagnostic
of interesting physical phenomena in interacting systems. We will give a brief
overview of this discussion, adapting it both to the general ideas outlined above
and simultaneously preparing the group for our holographic considerations in the
sequel.1

Consider a two-dimensional theory with conformal invariance, i.e., a CFT2. A
good account of these theories can be found in the books [60, 61]. Such theories can
be described by giving2

• The central charge c,
• A list of the quasi-primary operatorsOh;Nh which have definite weight, i.e., scaling

dimensions, fh; Nhg, under local Weyl rescaling, and
• The OPE coefficients C�˛ˇ which appear in the OPE: O˛Oˇ � C�˛ˇ O� , where we

drop the dependence on the insertion point.

1For a review of analysis of entanglement entropy in free field theories, refer to [59].
2Higher-dimensional CFTs are similarly described by their operator spectrum and OPE coeffi-
cients.
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The Hilbert space of states can be obtained from this data: owing to the state operator
correspondence (cf., [61]), we can map a given local operator Oh;Nh onto a state in
the Hilbert space jh; Nhi D Oh;Nh j0i. We will make use of some of this structure later
on in our discussion (cf., Sect. 7.2), but for now we wish to show how to compute
entanglement entropy in such theories.

The special feature of two-dimensional CFTs is that they possess an infinite
dimensional global symmetry algebra, called the Virasoro algebra. While in any
dimension we have the group of conformal transformations extending the S.d; 1/
Poincaré symmerty in relativistic systems to SO.d; 2/, when d D 2, the SO.2; 2/
algebra gets enhanced. The reason is that, in two dimensions, a local conformal
transformation can be viewed as independent holomorphic and anti-holomorphic
transformations. This can be seen by adapting complex coordinates z D xC i tE and
Nz D x � i tE and noting that a local conformal map factorizes into f .z/ g.Nz/. We will
review the Virasoro algebra later in Sect. 7.1, noting for now that the computations
below harness the power of this enlarged symmetry.

3.1 A Single-Interval in CFT2

As discussed in Chap. 2, we have to pick a state and a region A to talk about the
entanglement entropy SA. To start with we will consider simple static states for a
CFT2 on R

1;1 and R � S1, respectively. We will exploit the time independence to
work in Euclidean signature, mapping the background geometry to the complex
plane C D R

2 and the cylinder, respectively. The discussion below applies to
both cases equivalently, so we will indicate the picture for the plane and generalize
therefrom to the cylinder.

Consider then the vacuum state j 0i of the CFT2 on C. We pick an instant of
time, say t D 0 w.l.o.g., and define A to be an interval �a < x < a. The entangling
surface in this scenario is the two endpoints of the interval. The replica construction
requires us to take q-copies of the complex plane with slits cut out along A and
to glue them cyclically to construct the manifold Bq. This construction in two-
dimensional geometry constructs a q-sheeted surface with prescribed branching at
fx D ˙a; t D 0g, as illustrated in Fig. 2.6. What is clear for the complex plane is
that the cyclic gluing of q copies of that plane does not change the topology: Bq is a
genus-0 surface; we just have to deal with a function that is multi-branched.

We are required to compute the partition function ZŒBq� as a first step. Since Bq

is a genus-0 surface, we should be able to conformally map it back to the complex
plane. Equivalently, we can start with fields 
.x; t/, which live on a single copy of
the complex plane, and upgrade them to 
k.x; t/ with k D 1; 2; � � � ; q which live on
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the q-copies. The gluing conditions for constructing Bq can be mapped to boundary
conditions for the fields


k.x; 0
C/ D 
kC1.x; 0�/ ; x 2 A D fxjx 2 .�a; a/g (3.1.1)

These boundary conditions can be equivalently implemented by passing from the
basis of q-independent fields to a composite field '.x; t/ living on B obeying twisted
boundary conditions. The map one seeks should thus implement the twists by the
cyclic Zq replica symmetry. An easy way to think about this construction is that
we are no longer working with the original CFT but rather with the cyclic product
orbifold theory [62].3

One introduces then, as in any orbifold theory, a set of twist fields which
implement the twisted boundary conditions. For the case at hand the twists are by
qth roots of unity, and the main property we need for the twist operator Tq is that it
induces a branch-cut of order q for the fields at its insertion point. Standard orbifold
technology reveals that the scaling dimension of the twist operator is

hq D Nhq D c

24

�
q � 1

q

�
: (3.1.2)

The main advantage of introducing these fields is that we can write down the
partition function of our theory on Bq in terms of correlation functions of the twist
fields:

ZŒBq� D
q�1Y

kD0
h Tq.�a; 0/ Tq.a; 0/ iB (3.1.3)

where we used the subscript B to indicate that the correlation function is meant to
be computed on the original manifold. For our choice of A being a single connected
interval, the above computation is very simple. Treating the twist fields as conformal
primaries with scaling dimension given by (3.1.2), we learn that

ZŒBq� D
�
2a

�

�� c
6

�
q� 1

q

�

(3.1.4)

where we introduced a UV regulator � to write down the correlation function. We
now find accounting for the normalization of the density matrix induced onto the

3See [63] for an abstract discussion of how one can use orbifold technology to understand the
computation of Rényi entropies. The original references on orbifolds [64, 65] are a great resource
for learning about the technology we employ below.
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region A that

S.q/A D c

6

�
1C 1

q

�
log

2a

�
: (3.1.5)

In this simple case it is in fact trivial to analytically continue from q 2 ZC to q � 1.
One clearly obtains:

SA D c

3
log

2a

�
: (3.1.6)

The remarkable aspect of this answer is that the result is agnostic to the details
of the CFT2. It only cares about the overall central charge and thus one does not
gain any deep insight into the nature of the degrees of freedom which are entangled.
We should remark here that while unitary CFTs with c < 1 have the spectrum
determined by the central charge, this does not happen for c > 1. In any event, the
result for a single-interval entanglement entropy provides some overall information
about the CFT in question, through its dependence on the central charge, even
though it is unable to resolve finer details. Consequentially, one can use SA to
provide an alternate measure for the central charge, and this line of thought is useful
for providing an entanglement-based proof for the c-theorem [43].

There are two other scenarios in which we can immediately write down the
answer for the Rényi and entanglement entropy directly using the known two point
functions of the twist operator. These correspond to situations where the geometry
B D R�S1. This can be interpreted in two ways: we can either talk about a CFT on
a compact spatial geometry of size `S1 , or we can turn things around and view it as
a thermal field theory on the real line with the circle parameterizing the Euclidean
time direction with period set by the inverse temperature ˇ D `S1 . We obtain in
these two cases the results by a trivial generalization of the above computation,
taking into account the natural distance measure on the cylinder.

For the finite spatial domain, we find

SA D c

3
log

�
`S1

� �
sin

�
2a

`S1

��
(3.1.7)

while for a thermal system in non-compact space, we end up with

SA D c

3
log

�
ˇ

� �
sinh

�
2� a

ˇ

��
(3.1.8)



3.2 Disconnected Regions, Multiple Intervals 31

In both of these cases, we are taking A to have width 2a. We have expressed
the result in terms of the physical length scales, though one can equivalently
express (3.1.7) in terms of angular arc length.

3.2 Disconnected Regions, Multiple Intervals

The computation for multiple intervals is quite complex even in two-dimensional
CFTs. Consider for example a disjoint union of m spatial intervals A D [m

iD1Ai.
The replica method says that we are required to construct the q-fold Zq symmetric
branched cover of the basic geometry with 2m branching points. Now each pair
of regions will conspire to produce a single handle for every two copies of the
replicated geometries. This implies that the branched cover spacetime is a higher
genus Riemann surface with g D .q � 1/.m � 1/.

As a result, the computation of the Rényi entropy involves evaluating the partition
function of the CFT on this Riemann surface (or equivalently an appropriate
correlator of 2mq twist operators). Neither of these is easy to compute explicitly
in generic interacting CFTs. On general grounds, one can argue that the answer is a
modular form of a certain degree, which is a function of the moduli of the Riemann
surface.4 The modular forms in question are functions of the moduli, and can be
written naturally in terms of the g � g period matrix of the Riemann surface which
encodes this data. In some special cases, we even happen to know what this object is,
e.g., in the free compact boson CFT we can obtain the answer in terms of the Siegel
theta functions; see for example [66] for computations in the free boson theory.

One however has an essential complication in analytically continuing the answer
from q 2 ZC down to q ! 1. The reason is as follows: the Rényi index q enters into
the genus of the Riemann surface, and thence into the size of the period matrix.
Analytic continuation would require us to suitably continue the theta functions
to have non-integral-dimensional period matrices in their argument. As a result,
there is so far no explicit evaluation of entanglement entropy in these theories for
disconnected regions.

There are a couple of exceptions to the above discussion. For q D 2;m D 2, the
computation involves the torus partition function. This only involves the spectral
data of the CFT and can thus be obtained directly. We can also obtain the result for
the entanglement entropy for a free Dirac fermion as long as we don’t sum over
the spin structures in closed form [67]. We refer the reader to [68] for a detailed
discussion of these issues including a critical examination of the interplay with
Bose-Fermi dualities.

4While a general genus-g Riemann surface has 3g�3moduli, the branched cover Rényi geometries
are a special subclass with the moduli being determined by the 2m � 3 cross-ratios.
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A

A

A
A

Fig. 3.1 Construction of the branched cover geometry Bq involved in the computation of the qth
Renyi entropy in a CFT2 at finite temperature and in finite spatial volume. So B is a torus and we
illustrate how three copies of this torus are cyclically sewn across the region A to obtain a genus-3
surface required for S.3/

Another interesting situation involves the thermal state of a CFT2 in finite
volume. In this case, even for a single-interval, one encounters a non-trivial higher
genus computations, as explained in Fig. 3.1. Gluing torii across a single cut
cyclically produces a surface of genus q for the qth Rényi entropy. Multiple regions
may be analyzed similarly, with newer handles being generated from the gluing at
each stage.
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Chapter 4
Holographic Entanglement Entropy

The discussions in Chaps. 2 and 3 make it rather clear that while we have to evaluate
a sequence of functional integrals to compute the Rényi entropies, these are rather
complex quantities which required us to work with QFTs on singular branched cover
manifolds. Apart from the case of CFT2 discussed in Chap. 3, where the power of
conformal invariance can be used to simplify the problem, this is a rather formidable
task for interacting QFTs, in general.

4.1 A Lightning Introduction to Holography

We now turn to holographic field theories which are dual to gravitational field the-
ories in a different spacetime using the gauge/gravity or AdS/CFT correspondence.
This remarkable correspondence was first discovered by Maldacena [8]. It asserts
that a class of non-gravitational QFTs in d-dimensions are equivalently described
in terms of a string theory involving gravitational interactions. The correspondence
was developed further in [19, 20] and the reader can find detailed accounts of the
basic statements in the classic reviews [21, 22].

The QFTs in question have two basic parameters which are relevant: a coupling
constant �, which measures the interaction strength between the constituents, and
a measure of the effective number of degrees of freedom ceff. For general values
of the parameters f�; ceffg the dual picture is that of an interacting string theory.
We are clearly oversimplifying here, by demanding that there be a single parameter
controlling all interactions.

© Springer International Publishing AG 2017
M. Rangamani, T. Takayanagi, Holographic Entanglement Entropy,
Lecture Notes in Physics 931, DOI 10.1007/978-3-319-52573-0_4

35



36 4 Holographic Entanglement Entropy

Things drastically simplify in the limit ceff ! 1, which we will refer to as the
planar limit. When the number of degrees of freedom are scaled to be large, the
string interactions become weak; one can then truncate to the tree level result, thus
obtaining the classical string limit. One way to view this statement is to note that
in the planar limit the QFT path integral can be argued to localize around a new
non-trivial saddle point which can be described by a master field configuration. The
master field defines a new semiclassical limit with an effective Planck constant „ /
1
ceff

, which dominates the configurations contributing to the functional integral. The
intuition that such a classical saddle could exist was developed by studying the large
N limit of gauge theories [69, 70], where N captures the rank of the gauge group,
say SU.N/. While master fields for pure gauge theories remain elusive, one now
has, thanks to the gauge/gravity correspondence, a statement for many interacting
QFTs.

While we have achieved a great deal of simplification, mapping in the planar
limit, an interacting quantum system to a classical dynamical system involving
strings, in general, it is still a formidable task to solve the classical string dynamics
to extract interesting physical information. One can achieve more if we consider
the strong coupling limit of the field theory � ! 1 whence the classical string
dynamics further truncates to classical gravitational dynamics of the general rela-
tivistic form. Basically in this limit, the massive string states in the dual description
become heavy and decouple, leaving only the dynamics of semiclassical gravity.
Thus in the combined limit �; ceff ! 1 one can phrase complicated questions about
the dynamics of quantum fields by studying semiclassical gravitational physics in
a dual spacetime. We will see that this holographic map simplifies dramatically the
computation of entanglement entropy.

The prototype example of holographic field theories are supersymmetric gauge
theories which are realized in the low energy limit of open string theories living on
D-brane worldvolumes in string theory. The oft-mentioned case is that of N D 44d
SU.N/ Super Yang-Mills, which is the maximally supersymmetric four-dimensional
QFT comprising of SU.N/ gauge fields, six adjoint scalars, and adjoint Weyl
fermions. This theory is a supersymmetric extension of pure Yang-Mills theory and
enjoys exact conformal invariance for any value of the coupling gYM . As a result,
there are no dimensionful parameters in the theory (all fields are massless) and one
may characterize the family of such theories by two parameters: � D g2YM N, which
is the dimensionless ’t Hooft coupling, and ceff / N2 � 1. In the large N limit,
which does correspond to planar gauge theory limit, we obtain the classical master
field of this theory in terms of string theory on AdS5�S5. The strong coupling limit
� ! 1 further truncates the dynamics to the two derivative Type IIB supergravity
theory on the same background. The latter contains as a subsector the dynamics of
Einstein-Hilbert gravity in AdS5 which will be of most interest to us.
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We list a few other examples of well-known pairs of field theories and their
gravity duals below:

• Two-dimensional CFTs with large central charge c 
 1 are expected to be
dual to classical theories on AdS3. To ascertain whether they limit to classical
Einstein-Hilbert gravity or something more complicated requires a more detailed
analysis (see [71, 63, 72, 73] for some recent attempts to do so). The well-known
example in this case is the .4; 0/2d superconformal field theory (SCFT) that arises
on the worldvolume of a bound state of D1 and D5 branes in string theory.
Given Q1 D1-branes and Q5 D5-branes wrapping X4� S1 with X4 being either
K3 or T4, the worldvolume SCFT2 is a symmetric orbifold theory with target
space XQ1Q5=SQ1Q5 , see e.g., [74]. This theory is holographically dual to classical
gravity on AdS3�S3� X4.

• In three dimensions, Chern-Simons matter theories lead to conformal and
superconformal field theories. The maximally supersymmetric theory in this case
arises from the dynamics of M2-branes. It is a N D 83d Chern-Simons theory
with gauge group SU.N/k � SU.N/�k with bifundamental matter, called the
ABJM theory [75]. This theory is dual to classical gravitational dynamics on
AdS4�S7.

• The prototype example of a six-dimensional .2; 0/6d SCFT (which is the max-
imum allowable dimension for superconformal invariance) is the wordvolume
theory of M5-branes [76]. While we have a rather poor understanding of the
microscopic description of this theory we know that in the large N (which is the
number of M5-branes) limit, it is dual to gravity on AdS7�S4.

4.2 The Gravitational Setup

More generally, one can have many more examples of d-dimensional conformally-
invariant field theories (CFTd) with varying amounts of supersymmetry which may
be argued to be dual to classical gravity on AdSdC1�Y with Y being some compact
space. The latter is required for a consistent embedding into string theory and will
play a minor role in what follows.

We will henceforth be reasonably agnostic about a particular field theory and
look for statements that are valid across the gamut of the AdS/CFT correspondence.
We assume that we have a CFTd which satisfies the criterion for the existence of a
holographic map �; ceff 
 1, and consider the class of these which may be studied
using classical gravitational dynamics in an asymptotically AdSdC1 spacetime,
which we henceforth call MdC1.

We view the classical gravity theory as a low energy effective field theory with a
consistent derivative expansion. In addition to dynamics of gravitons in AdSdC1, we
will also allow for matter, whose presence will depend on the particulars of the field
theory we study. One may be somewhat abstract and write the classical gravitational
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dynamics as being derived from an action:

Sbulk D 1

16� G.dC1/
N

Z
ddx

p�g

 
R C d.d � 1/

`2AdS

C
X

i

˛k D2kR C Lmatter

!

(4.2.1)

The leading terms here are the Einstein-Hilbert action with a negative cosmological
constant ƒ D � d.d�1/

2 `2AdS
. We have allowed for the possibility of higher derivative

corrections which are schematically denoted as covariant derivatives of the curva-
ture.1 These terms have dimensionful coefficients ˛i which in principle could be
non-trivial functions of the matter fields. In general, one may argue that these terms
are suppressed at large �. One has in addition two explicit dimensionful parameters
`AdS and G.dC1/

N / `d�1
P with `P being the d C 1-dimensional Planck scale. In string

theories, we have in addition a string scale `s which enters into the determination of
the higher derivative corrections through ˛k.

Given the three dimensionful length scales, the field theory parameters � and ceff

can be expressed as the dimensionless ratio of pairs. One typically finds relations of
the form2

ceff D `d�1
AdS

16�G.dC1/
N

; � D
�
`AdS

`s

��
(4.2.2)

where � > 0. In the familiar example of N D 44d SYM, � D 1
4
. Given this

dictionary, we should also note that ˛k / .`s/
2k � ��2k=� , so the higher derivative

corrections to the gravitational interactions may be viewed as terms arising in a
strong coupling perturbation theory.

To proceed, we will need a dictionary between the field theory and gravitational
observables. Consider a CFTd on some background geometry Bd, which we take to
be timelike and globally hyperbolic.3 The field theory can be in any of the states in
the Hilbert space and the AdS/CFT correspondence at a general level asserts that
each such state maps to an analogous state in the closed string Hilbert space. The
isomorphism between Hilbert spaces is the central feature of the correspondence.
Of interest to us will be a limited class of states, said to belong to the so-called
code subspace which have geometric duals.4 This special class of states of the
field theory on Bd are described geometrically in terms of a bulk spacetime MdC1

1D is the metric compatible covariant derivative operator on MdC1.
2We could have simply written ceff /

�
`AdS
`P

�d�1

, but have chosen to fix the normalization to be

consistent with standard conventions in explicit holographic dual pairs.
3These latter condition allows us to define a well-posed initial value problem for the quantum fields
which may be evolved using the Hamiltonian.
4We will revisit these ideas in Chap. 13. The code subspace derives from ideas in quantum error
correction.
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with @MdC1 D Bd. The spacetime MdC1 satisfies Einstein’s equations derived
from (4.2.1). For the bulk of our discussion, we will work in the corner of parameter
space where ceff 
 1 and � 
 1 so that we can effectively restrict attention to the
two derivative theory of Einstein-Hilbert gravity setting ˛k D 0.

Given Bd and information about the state on this background, say by prescribing
expectation values of various gauge-invariant operators, we solve the equations of
motion resulting from (4.2.1)

RAB C d

`2AdS

gAB D Tmatter
AB (4.2.3)

subject to the boundary condition @MdC1 D Bd. All the matter fields will obey
boundary conditions that can be explicitly specified. It is however useful to first
record some examples in which we have solutions with no matter.

The CFTd vacuum which preserves the S.d; 2/ conformal symmetry is dual to
the vacuum AdSdC1 spacetime. There are two special choices for Bd:

• Einstein static universe Bd D R � Sd�1, whence the bulk spacetime is the global
AdSdC1 geometry with metric

ds2 D �f0.�/ dt
2 C d�2

f0.�/
C �2 d�2

d�1 ; f0.�/ D 1C �2

`2AdS

: (4.2.4)

• Minkowski spacetime Bd D R
d�1;1, whence the bulk geometry is the Poincaré

patch of AdSdC1 which can be coordinatized as (nb: xd�1 D fx1; x2; � � � ; xd�1g 2
R

d�1)

ds2 D `2AdS

z2
��dt2 C dx2d�1 C dz2

�
: (4.2.5)

Both of these geometries preserve the entire conformal symmetry, though
different parts are manifestly visible in the chosen coordinates. The boundary is
attained in the limit � ! 1 and z ! 0 for the two cases discussed above. One can
see that the induced metric on the boundary is conformal to the natural metric on
the two spacetimes considered above.

The explicit coordinate transformation which maps between the two sets of
coordinates can be obtained from the embedding the AdSdC1 spacetime as a
hyperboloid in R

d;2, i.e., the hypersurface:

�X2�1�X20 C
dX

iD1
X2i D �`2AdS ; ds2

Rd;2 D �dX2�1�dX20 C
dX

iD1
dX2i : (4.2.6)
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One finds the explicit set of transformations

X�1 D
q
`2AdS C �2 cos tg D `2AdS C z2 C x2d�1 � t2

2 z
;

X0 D
q
`2AdS C �2 sin tg D `AdS t

z
;

Xi D ��i D `AdS xi
z

; i D 1; 2; � � � ; d � 1 ;

Xd D ��d D z2 C x2d�1 � `2AdS � t2

2 z
:

(4.2.7)

with�i being direction cosines,
Pd

iD1 �2
i D 1. We illustrate the domain covered by

the Poincaré coordinates in Fig. 4.1. The locus z ! 1 which marks the boundary of
the Poincaré coordinate chart is referred to as the Poincaré horizon. It is a degenerate
Killing horizon.

Excited states of the field theory map to non-trivial asymptotically AdSdC1
geometries obtained as described above by solving Einstein’s equations. The
simplest example is provided by the thermal state of the CFTd which is dual to a
Schwarzschild-AdSdC1 black hole spacetime. For the two choices of the boundary

Fig. 4.1 The Poincaré coordinate chart illustrated within the global AdS spacetime. The three
panels give slices of constant Poincaré time, the radial coordinate, and the translationally invariant
spatial coordinate respectively
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geometry as above, we get either

• The global Schwarzschild-AdSdC1 black hole spacetime:

ds2 D �f .�/ dt2C d�2

f .�/
C�2 d�2

d�1 ; f0.�/ D 1C �2

`2AdS

��
d�2C
�d�2

 
1C �2C

`2AdS

!
:

(4.2.8)

• The planar Schwarzschild-AdSdC1 black hole spacetime:

ds2 D `2AdS

z2

�
�f .z/ dt2 C dx2d�1 C dz2

f .z/

�
; f .z/ D 1 � zd

zdC
(4.2.9)

where �C and zC are the locations of the horizons in the two cases, respectively.
The Schwarzschild-AdSdC1 black hole temperature relates to the horizon radius

via

global W T D 1

4� `AdS

�
d
�C
`AdS

C .d � 2/
`AdS

�C

�
;

Poincaré W T D d

4� zC

(4.2.10)

The global black holes exist only above a minimum temperature, T >
p
d.d�2/
2� `AdS

.

Solutions with �C <

q
d�2
d `AdS are referred to as small black holes; they are similar

to their asymptotically flat cousins in their thermodynamic properties (they have

negative specific heat). Those with �C >
q

d�2
d `AdS are called large black holes.

The planar solutions can be obtained from them in the scaling regime �C 
 `AdS,
whence the curvature of the sphere at the horizon becomes negligible.

A special case which is of interest owing to its analytic tractability is AdS3,
where, unlike the asymptotic flat case, black holes exist. The solutions are referred
to as BTZ solution [77]. The metric takes the remarkably simple form:

ds2 D � r2 � r2C
`2AdS

dt2 C `2AdS dr
2

r2 � r2C
C r2d'2 ; (4.2.11)

with rC 2 R parameterizing the location of the horizon and ' 2 Œ0; 2��. As written,
this is the global BTZ solution, whose boundary is S1 � R. We can decompactify
the circle and write the planar BTZ solution by replacing ' ! x

`AdS
. Notice that the

solution for rC D i `AdS reproduces the global AdS3 solution. This is not surprising,
since BTZ solutions are obtained by quotienting the global AdS3 spacetime by an
isometry. In fact, note that solutions with rC D i `AdS

p
1 � � with � 2 Œ0; 1/

describe horizon-free solutions called conical defects. They can be thought of as
corresponding to geometries obtained by backreacting a point particle of mass
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/ �. A point mass in three spacetime dimensions has a logarithmic Newtonian
potential which impacts the fall-off in the radial direction, but this conspires with
the exponential growth of the spatial volume in AdS to produce the above behaviour.

Let us also record that the Euclidean BTZ solution has the metric (setting r D
`AdS sinh �):

ds2 D cosh2 � dt2E C d�2 C `2AdS sinh2 � d'2 : (4.2.12)

This spacetime has a boundary S1 tE � S1' , which is a two-torus T2. We would
obtain the same solution for the Euclidean AdS3 geometry with the roles of tE and
' interchanged. This is the bulk analog of a modular transformation operation on a
CFT2 on T2.

More general spacetimes involving matter can be obtained once we identify the
states of the field theory we want to consider. It is particularly useful to know that a
gauge-invariant local operator of the field theory maps via the AdS/CFT dictionary
to a local bulk matter field. The asymptotics of the field in the geometry MdC1 can
be mapped to the operators themselves and to the classical sources which couple to
them. For instance, a minimally coupled (self-interacting) scalar field of mass m2 in
AdSdC1 behaves asymptotically as


.z; t; x/ � J .t; x/ zd�	 C hO.t; x/ i z	 ; 	 D d

2
C
r

d2

4
C m2 `2AdS

(4.2.13)

The two fall-offs are referred to as the non-normalizable zd�	 which couples to
the classical (non-fluctuating) source and the normalizable mode z	 picks out the
expectation value (in the presence of the source). This formula is valid for m2 `2AdS �
� d2

4
which is the Breitenlohner-Freedman bound for stability in AdSdC1. Operators

are relevant, irrelevant, or marginal, depending on whether the dual bulk field has
negative, positive, or vanishing mass, respectively.5

There is a useful heuristic way to motivate the AdS spacetimes as the geometric
duals to CFTs in their vacuum state. Focus on the field theory in Minkowski
spacetime with coordinates .t; xd�1/. Scale invariance demands that under spatial
and temporal scalings t ! � t; xi ! � xi, the state be invariant. The AdS spacetime
geometrizes this; for example,

t ! � t; xi ! � xi z ! � z ; (4.2.14)

5There is one subtlety which is worth keeping in mind: for � d2

4
� m2 `2AdS � � d2

4
C 1 we

both modes turn out to fall-off fast enough to be normalizable. One then can choose to swap
the identification of sources and operators leading to what is sometimes referred to as alternate
quantization (or Neumann boundary conditions instead of the conventional Dirichlet boundary
conditions). This choice is relevant when we want to talk about operators that come close to
saturating the unitarity bound in CFTd .
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leaves the Poincaré metric invariant. Indeed, the full isometry group of AdSdC1
is the group SO.d; 2/ which is the group of conformal transformations of a
CFTd. Equation (4.2.14) furthermore accords the radial coordinate z an interesting
interpretation in the field theory [78]: it can be viewed as a geometrization of the
energy scales in the field theory leading to the idea of the scale/radius duality.
Microscopic scales in the field theory correspond by this dictionary to macroscopic
scales in the bulk geometry; UV physics maps to IR physics and vice versa. In
particular, a field theory excitation that is well localized on some scales of order
� translates to gravitational excitations that are supported near the boundary of the
AdS spacetime, viz., � ! 1 in global coordinates (4.2.4) or z ! 0 in Poincaré
coordinates (4.2.5). Macroscopic excitations in the field theory will correspond to
gravitational effects deep in the interior of the spacetime, which would be confined
near the center of global AdS � ! 0 or the Poincaré horizon z ! 1. A localized
excitation created in a scale-invariant field theory will expand out as time progresses,
distributing its energy on larger and larger spatial scales. This may simply be
interpreted as the gravitational free-fall of a bulk particle under the influence of
the attractive AdS potential.

We will see how this scale/radius relation plays out in various ways in the course
of our discussion. In practical applications, any field theory calculation that requires
a UV regulator will translate into imposing a geometric IR cut-off in the AdS
spacetime. We will for the most part choose to translate a field theory UV cut-off �
into a rigid cut-off z D � in the bulk geometry.

We will henceforth focus on gravitational theories in AdSdC1 as a simple proxy
for the holographic correspondence.

4.3 The Holographic Entanglement Entropy

Now that we have a dictionary between the states of the field theory and asymptoti-
cally AdS geometries, we can turn to asking how entanglement entropy is captured
holographically. This question was first addressed by Ryu and Takayanagi (RT) in
[9, 10] in which they gave a prescription for static time-independent situations. This
prescription was subsequently generalized by Hubeny, Rangamani, and Takayanagi
(HRT) in [11] to general states, including arbitrary time dependence.

Given a holographic CFTd on a boundary geometry Bd, we want to figure out
how to compute the entanglement entropy of a given spatial region A. We will
take this region to lie on some Cauchy slice † � Bd, so that we are computing
the entanglement entropy at some particular instant in time. Note that, as always,
† D A [ Ac and the entangling surface is @A.

The holographic entanglement entropy prescriptions are very simple to state
in the general time-dependent case. Firstly, one is instructed to find a surface EA
which is a codimension-2 extremal surface in the bulk spacetime MdC1 anchored
on @A. By virtue of being extremal, the surface EA is a local extremum of the
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area functional and is subject to the boundary conditions that EA
ˇ̌
B D @A. Among

all such surfaces, for there can be more than one such, we are required to only
consider those that satisfy a homology constraint. This demands that EA is smoothly
retractable to the boundary region A. More precisely, there should exist a spacelike,
bulk codimension-1, smooth interpolating surface RA � MdC1 which is bounded
by the extremal surface EA and the region A on the boundary. Finally, among the
entire family of extremal surfaces satisfying the homology requirement, we should
pick the one that has the smallest area. The holographic entanglement entropy is
then given by the area of this surface in Planck units in a manner similar to the
black hole entropy formula of Bekenstein and Hawking. To wit,

SA D min
X

Area.EA/
4G.dC1/

N

; X D EA W
(

@EA � EA
ˇ̌
@M D @A

9 RA � M W @RA D EA [ A
(4.3.1)

Note that these statements extend in an obvious manner to general situations
arising in the string theoretic context. Suppose the dual of QFT on Bd is string
theory on Md� Y; then we should take EA to be a codimension-2 surface in the full
spacetime subject to the restrictions above and measure the area in the appropriate
higher-dimensional Planck units (e.g., replace G.dC1/

N ! G.10/N ). For direct product
geometries this simply extends the statement above to say that our surfaces wrap
the internal space Y whilst being extremal in MdC1. This should be clear in simple
examples such as AdS5 �S5. More generally, the compact space Y may be non-
trivially fibered over the base MdC1 and one needs to find a surface that is genuinely
extremal in such geometries. For instance, the 1

2
-BPS states of N D 4 SYM which

are dual to the LLM geometries [79] or the microstate geometries of the D1 � D5
system [80] fall into this general class.

While the specification of an extremal surface as the local extremum of the
area function is sufficient, it is sometimes useful to give a more geometric
characterization of it. We can do this by noting that the surface EA is a codimension-
2 spacelike surface. Hence, the space transverse to it in M has a timelike and a
spacelike normal, i.e., its normal bundle has a local Lorentzian structure of R1;1. In
such situations, it is helpful to pass to a basis of null normals by taking appropriate
linear combinations. Let the two null normals to EA be NA

.1/ and NA
.2/, respectively.

We choose to normalize them by making the choice

NA
.1/N

B
.2/ gAB D �1 ; NA

.1/N
B
.1/ gAB D NA

.2/N
B
.2/ gAB D 0 : (4.3.2)

The condition of extremality can be phrased in terms of the extrinsic curvature of
these null normals. Define the projector onto the surface EA

�AB D gAB C N.1/A N.2/B C N.2/A N.1/B (4.3.3)
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through the use of which we can obtain the extrinsic curvature tensors

K.i/AB D �CA �
D
B rAN

.i/
B : (4.3.4)

The statement of extremality then simply asserts that

�AB K.i/AB D 0 H) K.1/ D K.2/ D 0 : (4.3.5)

Thus the statement of extremality can equivalently be phrased in terms of the
vanishing of the null extrinsic curvatures in the two normal directions to the extremal
surface.

In the case where the field theory state is static, or more generally if we consider
states at a moment of time reflection symmetry, then we can more simply focus on
minimal surfaces EA which lie in the bulk on a constant time slice. This was the
original RT proposal put forth in [10], while the general prescription given above is
the HRT version.

To appreciate the distinction, note that in general the Cauchy slices Q†t in the
bulk are not uniquely determined by a Cauchy slice † in the boundary geometry B.
Given † � Bd, one can pick any Cauchy surface of the bulk as long as each point
on it remains spacelike separated from it. This defines a region which we refer to
as the FRW wedge of the bulk spacetime, see Fig. 4.2. We could in principle expect
the extremal surface to lie somewhere in this FRW wedge. We can clearly see that

AAc RA

Σ̃t

RAc

∂A

e

(b)(a)

Fig. 4.2 (a) Depiction of the FRW wedge in the bulk and (b) a Cauchy slice Q†t within that wedge
that is divided by the boundary bipartition into two homology surfaces RA and RAc
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it cannot lie outside—for if it did, then it would be timelike related to the boundary
Cauchy surface, which would lead to an inconsistency.6

However, when we have a timelike Killing field of the boundary geometry which
is respected by the CFT state then one can canonically extend the boundary Cauchy
slice into the bulk as the corresponding equal time surface. Heuristically, once we
have a unique mapping from a constant time slice of the boundary to a corresponding
one in the bulk, we can argue that the entanglement entropy should be computed by
a surface on that slice itself. Indeed, separating the null extrinsic curvatures into a
basis of timelike and spacelike normals, we learn that (4.3.5) can be decomposed
differently into K.t/ D K.s/ D 0. If we have a bulk Cauchy slice that respects time
reflection symmetry, then K.t/AB D 0 altogether, so we only need to find a surface
on Q†t which satisfies K.s/ D 0. The reader can then convince themselves that this
condition is equivalent to the Riemannian problem of finding minimal surfaces.

Now we have emphasized that the ceff ! 1, planar limit reduces the boundary
QFT to an effective classical field theory. The astute reader may be left pondering
why then are we describing an intrinsic quantum feature such as entanglement in this
limit. A quantum state in the field theory Hilbert space has some spatially ordered
entanglement, which can be explored in an asymptotic expansion in c�1

eff . When there
is a macroscopic contribution at O.ceff/, this tends to dominate the limit, and is
captured by a saddle point analysis. The RT/HRT proposals only capture this leading
order contribution to the entanglement in the form of geometric data. Contributions
t of O.1/ are not described by bulk geometry, but rather require one to study the
bulk entanglement entropy, as we shall explicitly see.

While the RT proposal was suitably covariantized by the HRT prescription of
upgrading minimal surfaces to extremal surfaces, for certain considerations the
description in terms of extremal surfaces proves sub-optimal. Aron Wall [81] came
up with a reformulation of the HRT proposal in terms of a maximin construction,
which provides a nice complementary perspective. We will see its great utility in
later discussion when we prove the holographic entropy inequalities.

The construction proceeds as follows: given a boundary region A, we pick a
bulk Cauchy slice . Q†t/guess such that @. Q†t/guess D A [ Ac D †. On this slice
we find a minimal surface; call it mguess. Note that this is a well-defined boundary
value problem in Riemannian geometry, since . Q†t/guess is spacelike. One then varies
the choice of the bulk Cauchy slice, finding minimal surfaces on the entire family.
We can imagine this construction by filling out the FRW wedge of † with Cauchy
slices containing (spacetime codimension-2) minimal surfaces drawn on them. One
is instructed to compute the area of the minimal surface on each slice and take the
one from this (infinite) family with the maximum area. This is the maximin surface.
To wit,

EA
maximin D m� 2 fmguess � . Q†t/guess is minimalg & Area.m�/ is maximal

(4.3.6)

6As described in [33], one can use known causal features of entanglement entropy to argue that it
lies within a rather restricted region of the FRW wedge called the causal shadow, see later.
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While it is not obvious from this definition it transpires that a maximin surface is
in fact an extremal surface EA

maximin D EA. Note that there isn’t a unique Cauchy
surface that contains the extremal surface. As is hopefully clear from Fig. 4.2b, any
spacelike slice of the FRW wedge that is pinned at A [ Ac on the boundary and
passes through the extremal surface EA, provides a Cauchy slice on which EA is a
minimal area surface. Since the slices are all pinned at EA we don’t see any temporal
variation and the maximin condition enforces that the surface is truly extremal in the
full spacetime. For details of the proof, we refer the reader to [81].

We now have at our disposal the holographic entanglement entropy prescriptions.
We will first take note of their derivation, and thence proceed in subsequent sections
to analyze the physical consequences of these ideas.



Chapter 5
Deriving Holographic Entanglement Proposals

The holographic entanglement entropy proposals described in Sect. 4.3 were first
inspired by drawing an analogy with black hole entropy. While one can argue that
the various known properties of entanglement entropy are satisfied by the holo-
graphic construction, this per se does not pin down a precise proposal. Furthermore,
it does not explain how the prescription for the computation of entanglement entropy
relates to the dynamics of the gravitational theory in the bulk. For instance, we gave
the prescription in Sect. 4.3 for Einstein-Hilbert gravitational dynamics—one would
like to know how to take into account the finite ˛k corrections as in (4.2.1).

These issues have been addressed in the literature over the past few years and
we now have a reasonable understanding of the origins of the RT/HRT proposals
and generalizations thereof. We will below give a description of the elements
of the proof in the context of Einstein-Hilbert gravity, and indicate the various
generalizations.

Before we get into the details of the argument, let us record here some of the
significant attempts in the literature to address a derivation of the proposals. The first
attempt at a proof was provided in [82]. Here it was realized that the branched cover
construction of Bq from B can be viewed in terms of a conical singularity on the
boundary. If one makes the naive assumption that this boundary conical singularity
extends into the bulk trivially, then an evaluation of the action on such a singular
solution leads to the RT formula. However, this construction fails to respect the rules
of the AdS/CFT dictionary. Given suitable boundary conditions, we are required to
find bulk solutions which are consistent solutions to the gravitational equations of
motion. The naive ansatz with the singularity extended into the bulk does not satisfy
Einstein’s equations. This was first explained in the analysis of [62], whose author
went on to provide additional evidence for the RT formula.

A major step towards a proof was provided by the analysis of Casini, Huerta,
Myers (CHM) [83], who focused on spherically symmetric domains in the vacuum
state of a CFT. Utilizing two facts, (a) the knowledge of the modular Hamiltonian for
Rindler space, and (b) a conformal map relating the Rindler wedge to the domain of
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dependence of the circular region, they were able to argue that the reduced density
matrices for such configurations are equivalent up to a unitary transformation to a
thermal density matrix. This enabled them to use the standard dictionary between
thermal physics and black holes to determine the entanglement entropy in terms of
the Bekenstein-Hawking entropy of the black hole. Recall that the latter is given
for stationary black holes as the area of the bifurcation surface of the horizon (the
locus where the null Killing generator vanishes). The bifurcation surface turns out
to satisfy the extremality condition, and thus one can see how the RT prescription
could arise from this sequence of relations.

Subsequently, Lewkowycz and Maldacena (LM) [84] gave a local version of
this argument, described below, which allowed them to derive the RT proposal.1

Recently [87] have extended this argument to provide a derivation for the HRT
proposal. The distinction is that, in the covariant analysis, one has to employ
elements of the Schwinger-Keldysh formalism, as should be clear from the field
theory discussion in Sect. 2.3.

5.1 Deriving the RT Proposal

The key step in deriving the RT proposal is the basic entry into the AdS/CFT
dictionary which says that, in the semiclassical limit provided by large ceff, the
bulk geometry is a saddle point configuration of the string theory path integral
with prescribed boundary conditions; recall the discussion around Eq. (4.2.3). The
computation of Rényi entropies of quantum field theories has the advantage of being
phrased in familiar geometric terms, described for instance in Sect. 2.3, which we
now exploit to determine the bulk duals. It will be clear from the analysis that
what we can access from the RT proposal is the macroscopic part of entanglement
entropy, which is given in terms of a classical solution in the limit ceff ! 1. We
will subsequently describe how to think about corrections to the result.

Given a field theory on B with a chosen region A lying on a Cauchy slice, the
computation of the qth Rényi entropy necessitates a replica boundary geometry, Bq,
which is a q�fold ‘branched cover’ over the original manifold B. The branching is
along the codimension-2 entangling surface @A. Given suitable boundary conditions
for the fields on the branched cover geometry, we have a path integral prescription
for the Rényi computation. Our strategy will be to evaluate this path integral by
passing over to the bulk string theoretic path integral and use the aforementioned
semiclassical approximation to evaluate the result as the on-shell action of a
gravitational saddle point geometry.

We first focus on time-independent static states in which the boundary geometry
B, and thence the replica space Bq, both have a timelike Killing field @tE . This is a

1The LM construction was originally generalized towards understanding higher derivative correc-
tions in [85, 86].
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useful starting case to consider as it allows us to analytically continue the bulk path
integral from Lorentzian to Euclidean signature, which has some advantages. For
one, we have a reasonable understanding of the Euclidean Quantum Gravity path
integral, despite certain subtleties involved in its definition and evaluation (mostly
due to the wrong sign for the conformal mode, which fortunately will not play a
role in our analysis). For another, the bulk boundary conditions we need to impose
are sufficiently straightforward to state and implement, both at the topological and
geometric levels.

We are required to find a bulk manifold Mq which has as its boundary Bq. This
provides a well-posed boundary value problem for the Euclidean quantum gravity
path integral. Once we have the solution, we should evaluate the on-shell action to
obtain the saddle point value of the Rényi entropy.

Let us make these a bit more precise. We will work in the ceff 
 1 limit and
simply take the bulk theory given by Einstein-Hilbert gravity. Thus we approximate,
for the partition function of the string theory

Zstring D
Z
ŒDˆstring�e

�Sstring

ceff!1�
Z
ŒDg� exp

 
� 1

16� G.dC1/
N

Z

M
ddC1xp

g

�
R C d.d � 1/

`2AdS

�!

(5.1.1)

We proceed to evaluate the r.h.s. in the saddle point approximation and write:

ZstringŒMq� � e�IŒMq � ; (5.1.2)

with Mq being a stationary point of the Einstein-Hilbert action, i.e., it solves (4.2.3)
with the boundary condition @Mq D Bq. Given this on-shell action, we can evaluate
the Rényi entropy as

S.q/ D 1

1 � q
log

�
Tr.�Aq/

.Tr�A/q

�

D 1

1 � q
log

�ZŒBq�

ZŒB�q

�

� 1

1 � q
log

�
ZstringŒMq�

ZstringŒM1�q

�

D 1

1 � q

�
logZstringŒMq� � q logZstringŒM1�

�

(5.1.3)

where M1 D M is the asymptotically AdS manifold with @M D B. The factor of
q in the difference arises from the normalization of the reduced density matrix.

We are thus far assuming q 2 ZC. To get the entanglement entropy though,
we will want to analytically continue to non-integral values of q. The major
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insight of Lewkowycz-Maldacena [84] was to argue that the analytic continuation is
simpler in the gravitational context. The argument can be distilled into two separate
components:

• a kinematical part which provides the essence of how to implement the analytic
continuation, and

• a dynamical part wherein one actually ensures that the ansatz chosen satisfies
Einstein’s equation.

Once we solve these two, we should evaluate the contribution of the saddle point
configuration to obtain S.q/. In practice it will be easier to evaluate the modular
entropy defined in (2.1.8) directly in gravity.

5.1.1 Kinematics

The construction of the replica manifold Bq as a q-fold branched cover over B
(branched at @A) comes equipped owing to the cyclicity of the trace with a replica
Zq symmetry. This symmetry basically shuffles the individual copies of B in Bq;
we can furthermore take a quotient Bq=Zq which is topologically equivalent to B
itself (see Fig. 3.1). We refer to the quotient space as the fundamental domain of the
branched cover.

The key assumption one makes in the argument of [84] is to extend the replica
Zq symmetry into the bulk. The bulk spacetime Mq has to be obtained by solving
the field equations. We are thus restricting attention to those spacetimes that admit
a natural Zq action inherited from the boundary conditions. Let us then consider the
bulk quotient space OMq D Mq=Zq. The replica symmetry will not act smoothly
in the bulk and thus OMq will contain some singularities. While we are assuming
that the bulk solution Mq admits a Zq action, the symmetry does not have to
act smoothly. OMq could and in general does contain Zq fixed points. These are
singularities which are typically of the orbifold type. A crucial assumption one
makes in the construction is that the singular locus in OMq is codimension-2 in the
spacetime—we will call this surface eq.

Intuitively, this boundary condition is natural. The boundary conditions involve a
spacetime manifold branched over @A, which is a codimension-2 surface in B. The
action of Zq in the bulk, inherited from the boundary, should act so as to extend this.
Locally near the boundary one expects therefore to see that @A gets extended into
a part of the bulk singular locus. Hence one anticipates that eq is a natural analog
of @A in the bulk since the boundary conditions of the problem demand that it be
anchored on @A.

The argument above, whilst intuitive, is unfortunately too local and only valid
in the near-boundary region of Mq. It is indeed possible to conjure examples [88]
in which the fixed point set in OMq is not codimension-2. The question of when
this happens can be addressed purely through topological considerations without
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detailed reference to the gravitational dynamics. The results of the aforementioned
paper show that as long as a one has a family of replica symmetric geometries
parameterized by some q, which furthermore are smooth for q 2 ZC, then one
can extend the local statement of the singular locus to a global statement. We will
assume this henceforth and take eq to be a codimension-2 surface of OMq.

Having made these assumptions, we are now in a position to set up the
gravitational problem. We will work in a single fundamental domain of the quotient
space OMq, which we have seen is topologically isomorphic to the original bulk
spacetime M. However, these two spacetimes have vastly different geometries
(for example, they have different metrics) owing to the boundary conditions. This
difference can be accounted for by the singular locus eq. This codimension-2 surface
can be treated as a source of energy-momentum which backreacts on the spacetime
M to deform it to OMq. To ensure that we have the correct geometry, we must
require appropriate boundary conditions at the fixed point locus itself, for eq is not a
generic singularity but one that arises from a smooth spacetime Mq by an orbifold
construction. The fact that we are taking an orbifold of a .d C 1/-dimensional
spacetime to get a codimension-2 singular locus suggests that the singular locus
should be treated as a cosmic brane which carries a tension

Tq D 1

4G.dC1/
N

q � 1
q

(5.1.4)

where we have reinstated all the factors of Newton’s constant appropriate for a
source of energy density localized in a codimension-2 surface of the spacetime.

The claim then is that we can compute the geometry of OMq, and thence Mq,
by starting with M with the codimension-2 cosmic brane with the above value of
tension. We solve Einstein’s equations (4.2.3) with Tmatter

AB arising from the cosmic
brane tension. Having determined the solution for OMq we compute the on-shell
action of this part of the spacetime and exploit the locality of the gravitational action
to infer that the action contribution of Mq should be q times that of a single domain,
viz.,

IŒMq� D q IŒ OMq� (5.1.5)

While the quotient space has a conical singularity with defect angle 2�
q , the covering

space Mq, we re-emphasize, is smooth; this observation will play a crucial role in
setting up the boundary conditions.

The advantage of the above manipulations becomes manifest when we have to
consider analytic continuation in q for purposes of computing entanglement entropy.
In the gravitational computation involving the cosmic brane, the parameter q simply
appears as the tension of the brane. This suggests that we can compute Rényi
entropies for non-integral values of the index by suitably tuning the cosmic brane
tension.
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This line of thought brings with it a very helpful bonus. We can separate the
deformation of the geometry into two parts: tangential and normal to the cosmic
brane. Let us adapt coordinates to the cosmic brane, whose worldvolume we
parameterize by coordinates yi with i D 1; 2; � � � ; d � 1. The normal directions
will be coordinatized by ftE; xg since we are still working in Euclidean space. In the
local neighbourhood of the cosmic brane, we can adapt to Gaussian coordinates so
that the metric can be written in the canonical form:

ds2E D dx2 C dt2E C �
�ij C 2Kx

ij x C 2Kt
ij tE
�
dyi dyj C � � � : (5.1.6)

We have retained only the leading terms in the Taylor expansion about the surface
located at x D 0; tE D 0. To this order, the Gaussian coordinate chart only sees the
extrinsic curvature of the codimension-2 surface embedded in spacetime. Working
to higher orders would entail keeping track of the curvature contributions, as in the
usual Riemann normal coordinates.

5.1.2 Dynamics

Having set up the basic problem in the gravitational context, we now want to figure
out what configurations dominate and thence compute their on-shell action. To
enforce the boundary conditions in the gravitational solution, let us examine the
metric close to eq in polar coordinate x ˙ i tE D r e˙i  . The replica Zq symmetry
implies that the action is invariant with respect to a global shift of the polar
coordinate in the normal plane  , viz.,  !  C 2� . This feature is illustrated in
Fig. 5.1. On the other hand, as we approach eq, the coordinate  has to traverse
through all the replica copies before reverting back to itself, i.e., it should be
identified under  �  C 2� q. Using the global smoothness of the saddle point
covering space geometry Mq, we infer that the local spacetime near eq in the
quotient OMq has be of the form2

ds2 D �
q2 dr2 C r2 d2

�C �
�ij C 2Kx

ij r
q cos  C 2Kt

ij r
q sin 

�
dyi dyj C � � � ;

(5.1.7)

eliding over higher order terms. We wish to draw attention to the explicit q
dependence. Its presence implies that in order for the metric to be smooth near
r D 0, we must encounter some non-trivial backreaction; one cannot simply identify
 � C2�q in (5.1.6). The dependence on the normal coordinates, and in particular
the factors of r e˙i , are easily determined by looking at which of the local mode

2This is heuristic, as the geometry is a nontrivial fibration of the normal bundle parameterized by
the .r; / over the codimension-2 base.
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A∂A

r

τ

B

eq

M̂q

Fig. 5.1 The local geometry in the vicinity of the fixed point set eq which extends out from the
entangling surface. We have chosen to parameterize the normal plane to this set in polar coordinates
(5.1.7) with r being the radial direction away from the fixed point and  the angular coordinate that
circulates around the codimension-2 locus

solutions are smooth. The admissible solutions behave as .rq ei  /˙! and .rq ei  /˙i!

in the vicinity of r D 0.
Once we have an ansatz, we should simply compute the field equations to discern

when they would be satisfied. Evaluating the curvatures for the geometry (5.1.7), we
find divergent contributions proportional to .q�1/ Ka

r where Ka � Ka
ij �

ij is the trace
of the extrinsic curvature. Examining potential higher order terms, one learns that
none of these can help compensate this contribution. The only way for the equation
of motion to be satisfied by the ansatz (5.1.7) is for the extrinsic geometry of eq to
be determined by the leading order analysis in the distance away from the locus. It
then follows that the set of admissible codimension-2 surfaces are required to have a
vanishing trace of the extrinsic curvature in the normal directions! Since we have a
t ! �t symmetry, we have trivally Kt D 0 and one thus derives the minimal surface
condition of [9]:

lim
q!1

eq ! EA ; EA 2 M with t D 0; Kx D 0 : (5.1.8)

5.1.3 The On-Shell Action

Remarkably, a local analysis around the fixed point serves to determine the RT
proposal involving minimal surfaces. Having obtained the right surface, we need
to determine the on-shell action and see that the result for the von Neumann entropy
is indeed given by the area formula (4.3.1). A-priori this is a global computation,
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which depends on the solution everywhere. However, diffeomorphism invariance
ends up localizing the result for the modular entropy to a codimension-2 surface.

There are many ways to do the computation, but one that is particularly useful is
to employ an argument based on the covariant phase space approach in gravitational
theories [89]. In fact, as originally explained in [84] and recently elaborated upon by
[27], one can compute more readily the derived quantity @qIŒ OMq� for any value of q.
This directly leads to the modular entropy QS.q/; this turns out always to localize onto
a codimension-2 surface, while IŒ OMq� does indeed necessitate an integration over
the entire manifold. The end result will be that we have a geometric result for the
modular entropy which will limit to the correct von Neumann entropy in the limit
q ! 1.

The main idea involves viewing the derivative with respect to q, @q, as a change
in the bulk solution (and its boundary conditions). Standard variational calculus
says that any variation of a classical action can be written as a combination of
the equations of motion and boundary terms (using integration by parts where
necessary). In gravity this takes the form:

ıIŒ OMq� D
Z

Mq

�
EABı.gq/AB C d‚..gq/AB; @q.gq/AB/


: (5.1.9)

where the boundary terms have be collected into a symplectic potential ‚. We will
review this formalism in some detail in Sect. 13.4.2.

For a typical variation that appears in a standard AdS/CFT calculation, (5.1.9)
would evaluate to a term at the asymptotic boundary @Mq D Bq, as long as it
does not have an internal boundary to the spacetime. However, we wish to consider
the variation of q, which instead changes the boundary condition near the fixed
point set eq. For the choice ıgAB D @qgAB, the variation satisfies @q.gq/AB

ˇ̌
Bq

D
0; @q.gq/AB

ˇ̌
eq

6D 0. Thus the change engendered by the replica index variation
is localized at the fixed point locus and has no contribution from the asymptotic
boundary of the spacetime. Accordingly we should encounter a contribution that is
localized on the fixed point locus.

Rather than evaluate the contribution from the fixed point eq, let us consider
regulating the singularity. We excise a tubular neighbourhood of size � around the
locus and denote by eq.�/ the codimension-1 surface bounding this neighbourhood.
One may therefore write

@qIŒ OMq� D
Z

eq.�/
‚..gq/AB; @q.gq/AB/ : (5.1.10)

We now have to evaluate the symplectic potential on the solution and then take away
the regulator by sending � ! 0. In this fashion it is clear that the result will indeed
be a local functional of geometric data on the fixed point eq.

In the present case, we won’t actually evaluate this integral; it can actually be
done given the symmetries. There is a faster and equivalent way to the answer,
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wherein we simply pretend that eq.�/ is a physical codimension-1 boundary. In that
case, we would have to prescribe boundary conditions for the gravitational fields,
to make sure that the Einstein-Hilbert action in the second line of (5.1.1) gives the
correct equations of motion under variations. The standard boundary terms which
ensures this, is the Gibbons-Hawking functional, given in terms of the extrinsic
curvature of the boundary. For the present case, this artificial boundary condition
would involve a contribution of the form

IbdyŒ OMq� D 1

8�G.dC1/
N

Z

eq.�/
K� ; (5.1.11)

at the blown-up singular locus. Here K� is the trace of the extrinsic curvature of the
codimension-1 surface eq.�/ (for Einstein-Hilbert dynamics). It is much simpler to
evaluate this quantity and subsequently remove the cut-off. The result we seek is
then

@qIŒ OMq� D �@qIbdyŒ OMq� ; (5.1.12)

Working in the local coordinates (5.1.7) in an open neighbourhood of eq, one
finds K� D 1

q � , and thus we get the result for the modular entropy

QS.q/ D @qIŒ OMq� D Area.eq/

4 q2G.dC1/
N

(5.1.13)

which, as q ! 1, gives us the RT formula. In obtaining the final answer, we used
the variation of the metric (5.1.7) at eq; it is given to be grr@qgrr

ˇ̌
eq

D 2
q and vanishes

for the other components.
The orbifold picture allows us to analytically continue the on-shell action IŒMq�

to non-integer q. The physical interpretation of the (parent space) solution for non-
integer q is unclear, but these geometries are just an intermediate step to compute
the action.

5.2 Deriving the HRT Prescription

Recently, a bulk derivation of the covariant HRT prescription was given in [87].
We will now give a brief discussion of the salient features of their argument. It
is also worth noting that attempts to understand this proposal led various authors
to test elements of its consistency with the general expectations in QFT over the
years. We will review some of these when we discuss properties of the holographic
entanglement entropy in Chap. 6.

The key issue we have face up to is that in genuine time-dependent circum-
stances, we cannot invoke the trick of passing to a path integral over an Euclidean
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A Ac

RA

Σ̃t

∂A

A

∂A

RA

Ac

Σ̃t

identify

Fig. 5.2 The bulk construction of the reduced density matrix elements involves two copies of the
spacetime in question, which are glued across the part of the bulk Cauchy slice associated with Ac.
With these parts identifies one is free to prescribe different boundary conditions for the fields in
RA for the forward and backward parts of the evolution to obtain the matrix elements of �A in the
gravitational construction. Further gluing the two copies of spacetime along RA will lead to the
evaluation of Tr .�A/

manifold.3 In the boundary field theory, we have already indicated in Sect. 2.3 the
necessary changes one needs to incorporate into the replica construction using the
Schwinger-Keldysh path integral construction. We evolve from the initial state up
until the moment of interest, say t, and then retrace our footsteps back to the far past.
This forward-backward evolution induces a kink at the Cauchy slice †t � A [ Ac

on the boundary B, as we only retain the part of the geometry to its past J�Œ†t�.
The question then is how to extend this field theory construction in the holo-

graphic context. A prescription for extending field theory Schwinger-Keldysh
contours into the bulk gravitational theory was developed in [90, 91]. The idea is to
consider in the bulk an analogous fold along some Cauchy slice Q†t, with the proviso
that the bulk evolution will proceed only in the part of the spacetime to the past of
Q†t, i.e., in QJ�Œ Q†t�.4 In other words, the initial conditions are evolved forward from
t D �1 up to Q†t and then we evolve back to construct the bulk Schwinger-Keldysh
contour. This forward-backward evolution through Q†t, across which two copies of
the bulk manifold are glued together, is illustrated in Fig. 5.2. On the Cauchy slice
as we reverse the evolution, we have to provide appropriate boundary conditions.

3In the absence of time-reflection symmetry, the analytic continuation of t ! i tE will lead to a
complex manifold. Moreover we cannot in general assume that we can analytically continue, for
we could involve physical non-analytic time-dependent sources.
4We will use a tilde to distinguish bulk Cauchy surfaces and causal sets from analogous quantities
on the boundary.
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Once we understand the interpretation of the Schwinger-Keldysh in the bulk
gravitation theory, the rest of the argument splits up naturally into two steps. We first
use the Schwinger-Keldysh replica trick to build the geometry Mq for computing
.�A/

q, which would involve gluing 2q copies of the bulk spacetime in a replica
symmetric fashion. However, on this geometry we still have a natural action of
the Zq replica symmetry. By taking a quotient the replica spacetime Mq with this
symmetry, we can construct the orbifold spacetime OMq D Mq=Zq as before with
a conical defect eq. The analysis then boils down to figuring out how the conical
defect affects the bulk equations of motion.

For purposes of understanding entanglement entropy, it suffices, as in the
Euclidean case, to examine the behaviour in the weak defect q ! 1 limit. One
can then argue that the local structure of the spacetime near this defect locally looks
like the Lorentzian analog of (5.1.7), viz.,

ds2 D �
q2dr2 � r2 d2

�C �
�ij C 2Kx

ij r
q cosh  C 2Kt

ij r
q sinh 

�
dyi dyj

C �
rfq .q�1/ � 1 ıg�� dx� dx� C � � � (5.2.1)

where fq is a normalization factor, with fq.q � 1/ 2 2ZC for q 2 ZC. The logic,
as before, is to solve the equations of motion with this ansatz. The geometry in the
neighbourhood of the fixed point locus is illustrated in Fig. 5.3.

A

Σ̃t

∂A
e

τ ∼ τ + 2πi

B

Fig. 5.3 The local geometry in the vicinity of the fixed point set eq which extends out from the
entangling surface in the Lorentzian setting (analog of Fig. 5.1). The normal plane is parameterized
using Rindler-like coordinates (5.2.1) with r being the radial direction away from the fixed point.
We have indicated the bulk Cauchy surface where we cut-off the spacetime and also the horizons
emanating from the codimension-2 locus
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We need to determine the correction to the geometry ıg�� owing to the
backreaction from the defect and simultaneously constrain the locus eq. This is
readily done and for the most part not too different from the Euclidean computation.
Assuming Einstein-Hilbert dynamics in the bulk, we find the equations of motion
reduce to

EOM / .q � 1/
1

r
Ka C regular .ıg/ : (5.2.2)

The extrinsic curvature terms in (5.2.1) lead to singular behaviour in the neigh-
bourhood of r D 0. Correction terms to the metric in ıg�� are unable to cancel
this divergent piece. Therefore one deduces that the trace of the extrinsic curvature
in the two normal directions must vanish, viz., Kt D Kx D 0. Taking the
linear combination of the spacelike and timelike normals to work with the two
null normals, we equivalently conclude that the null expansions vanish. Defining
x˙ D 1p

2

�
x0 ˙ x1

�
, we thus have the extremal surface condition postulated in [11],

viz.,5

Ka D 0 H) �˙ D 1p
2

�
K0 ˙ K1

� D 0 ;

H) lim
q!1

eq ! EA ; EA 2 M is extremal:
(5.2.3)

Having determined that the surface which is the fixed point locus of the replica
symmetry, using the Schwinger-Keldysh construction, is extremal, we now can also
constrain the bulk Cauchy slice in the FRW wedge Q†t. These Cauchy slices are not
only anchored at the boundary at the appropriate slice, i.e., @ Q†t D †t, but they also
have to contain the extremal surface EA 2 Q†t. We have already indicated this in
our depiction of the bulk domains in Figs. 4.2 and 5.2. In a sense the construction
of [87] exploits some element of the maximin construction [81]. A simple corollary
is that the homology condition is natural. The bulk Cauchy slice naturally admits a
bipartite decomposition: Q†t D RA [RAc and give two spatial codimension-1 bulk
regions with the appropriate boundary conditions.

The last step in the discussion involves demonstrating that the on-shell action of
the gravitational theory obtained using this Schwinger-Keldysh construction reduces
to the area of the extremal surface. The subtleties of this analysis are due to the
fact that we have to actually evaluate an oscillatory path integral in Lorentzian
signature directly, using a saddle point approximation. The calculation is however
simplified by working with the Lorentzian analog of (5.1.12), and evaluating the

5Note here that K0ij is the component of the extrinsic curvature in the timelike normal direction to
a codimension-2 surface (likewise K1ij is the corresponding spacelike component) and should not

be confused with the extrinsic curvature for Q†t (which has a timelike normal), denoted by K. For
codimension-2 spacelike surfaces in Lorentzian manifolds, these null normals are a natural basis
for the normal bundle.
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desired boundary terms. At the end of the day, one finds the expected answer

@qIŒ OMq� D 1

8�G.dC1/
N

@q

Z

eq.�/
K� D i

Area.eq/

4 q2G.dC1/
N

;

H) SA D Area.EA/
4G.dC1/

N

(5.2.4)

The extra factor of i in the on-shell action offsets the i in the definition of the
Lorentzian path integral, to give a real answer for the entanglement entropy.

5.3 Higher Derivative Gravity

Should we consider higher derivative gravitational theories, the general analysis can
be carried through in a similar fashion as discussed in [85, 86]. What becomes clear
is that the local analysis suffices to pin down the singular locus in the q ! 1 limit,
but this does not in all cases determine the functional which we minimize to obtain
the surface.

To describe the result, we need some notation. Let L.g;D/ be the Lagrangian
of a diffeomorphism-invariant theory of gravity, as in (4.2.1), with the overall
normalization as indicated there. Let EA be a codimension-2 surface in a bulk
spacetime M which solves the equations of motion resulting from this action. The
tangent space of M can be decomposed into the tangent space of EA and its normal
bundle. As before, N.i/A are the normals to the codimension-2 surface and K.i/AB the
corresponding extrinsic curvatures. We let Ma for a; b D 1; � � � ; d�1 be the tangent
vectors to the surface at a point. The unit binormal to the surface is defined as
"AB D N.i/A N.j/B "ij, while the projector PAB D N.i/A N.j/B gij localizes us onto the normal

directions. Finally, we assemble the extrinsic curvatures into KABC D NA.i/K
.i/
BC D

NA.i/M
.a/
B M.b/

C K.i/ab . These can roughly be seen as the antisymmetric and symmetric
combinations of the induced measure on the normal bundle.

The analysis now proceeds along the same lines as described in Sect. 5.1, with
the new ingredient being the changed equations of motion. At the end of the day,
the expression derived for the entanglement entropy can be given as an integral over
EA of the following functional:

DL D � ıL
ıRACBD

"AC "BD C
X

˛

2

Q˛ C 1

�
ı2L

ıRA1C1B1D1ıRA2C2B2D2

�

˛

KH1C1D1 KH2C2D2

�
�
.nA1A2nB1B2 � "A1A2 "B1B2 /nH1H2

�
C
�
.nA1A2 "B1B2 C "A1A2nB1B2 /"

H1H2

�

(5.3.1)
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The first term in the above expression is the famous Wald functional, which
computes the entropy of a black hole in the theory with Lagrangian density L. We
will have occasion to visit its derivation in Chap. 13. The second term involves the
sum over the auxiliary index ˛ which captures contributions from decomposing the
spacetime Riemann tensor into components tangential and normal to the surface.
What matters given the index structure is the set of terms in which the Lagrangian
density is varied with respect to Rzazb and RNzcNzd simultaneously, where z and Nz are
complex coordinates for the Euclideanized normal bundle z D r ei  from earlier.
For each such contribution, one has to ascertain the strength of the singularity eq
which is captured by Q˛ . One can estimate this by examining the powers of the
metric function grr in the Gaussian normal coordinates. All in all, the answer for the
entanglement entropy is then given by

SA D 1

8G.dC1/
N

Z
dd�1x

p
hDL (5.3.2)

The construction generalizes the Iyer-Wald construction [89] of black hole
entropy for higher derivative theories very nicely. For stationary black holes, one has
a bifurcation surface, which is a fixed point locus of the time translational symmetry.
As a consequence the bifurcation surface has vanishing extrinsic curvature. In this
situation, the second term vanishes. In a sense, the entanglement entropy function
derived in [85] provides a generalization of the black hole entropy formula. It also
appears that this construction has a useful role to play in providing a definition of
higher derivative black hole entropy in a dynamical setting. Evidence for this was
provided to linear order in fluctuations away from stationarity in [92, 93].

Thus for higher derivative theories the functionals derived in [85, 86] give us
the geometric generalization of the area functional which computes the holographic
entanglement entropy. However, as remarked earlier, these functionals themselves
are not to be extremized to compute the location of the surface EA in all cases. This
remains an open question to date.

5.4 Implications of the Bulk Replica Construction

Let us pause to take stock of the replica construction in the gravitational theory as
described in the previous two subsections. In both the Euclidean and the Lorentzian
geometries, the idea has been to realize that the replica spacetime can be interpreted
as the covering space of an Zq orbifold. The latter allows us to view the geometry
as being deformed owing to the presence of a conical singularity which we denoted
eq in our discussion. The advantage of the gravitational story is that the tension
of the cosmic brane which is responsible is a simple function of the Rényi index
q, cf., Eq. (5.1.4). One can then easily dial this tension, effectively implementing
the analytic continuation we desire quite simply in the gravitational description.
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Furthermore, the cosmic brane eq is a codimension-2 object, which in the q ! 1

limit limits to the HRT surface EA (in the original geometry M).
The extremal surface EA plays the same role in the bulk as the entangling surface

@A does on the boundary. Recall that both surfaces are codimension-2 in their
respective spacetimes EA � M and @A � B. Moreover, just as for the entangling
surface, the extremal surface divides any bulk Cauchy surface it lies on into an inside
and an outside. We can in fact take the bulk Cauchy surface to be the union of the
homology surfaces RA and RAc , respectively, which we recall connect EA to A on
one side and to Ac on the other. We can use this fact to ascertain some interesting
facts about the quantum corrections to the field theory entanglement entropy.

Firstly, note that the RT and HRT prescriptions only give us the leading large ceff

answer to the field theory entanglement entropy, owing to the fact that we are only
retaining the term proportional to 1

G
.dC1/
N

. In field theory, we expect

SA D ceff S
saddle
A C S1�loop

A C O
�
c�1

eff

�
(5.4.1)

In writing this expression, we have already implicitly used the fact that the leading
answer arises from a saddle point analysis in the bulk gravitational description. The
natural question is then, where does one get the 1-loop correction term from?

This question was answered in [94] in which it was argued that the 1-loop correc-
tion should be viewed as the regulated contribution arising from the entanglement
entropy of bulk modes subject to the bipartitioning RA [ RAc across @A. From
the Euclidean quantum gravity path integral perspective, this is quite natural since
the leading correction to the saddle point answer should arise from the 1-loop
determinant around the saddle (as for any functional integral). Modes in the bulk
that are on one side of the extremal surface are naturally correlated with those on
the other side. For obtaining the leading order corrections, it suffices to treat the bulk
theory perturbatively in G.dC1/

N , which means that we can focus on quantum fields
in a rigid background M. One then anticipates that the bulk entanglement entropy
will have a divergent contribution which goes like the area of the extremal surface
along with subdominant terms which will lead to finite corrections. The divergent
term can be viewed as a 1-loop renormalization of the bulk gravitational coupling
G.dC1/

N , since it can be combined with the leading RT/HRT answer. Thus suitably
regulating the result, one obtains the contribution from the finite pieces correcting
the boundary entanglement entropy. This result was independently verified in some
situations by [95] who exploited the power of two-dimensional CFTs to obtain the
asymptotic expansion as in (5.4.1).

One therefore can write schematically:

SA D Area.EA/
4G.dC1/

N

C SbulkRA C O
�
G.dC1/

N

�

� ceff h bArea.EA/ i C SbulkRA C O.c�1
eff /

(5.4.2)
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The first line is meant to be read as a statement in semiclassical gravity, with
geometric quantities and perturbative quantum gravitational fields thrown into the
mix. The second line is an attempt to formalize this statement in the bulk quantum
gravitational theory. Since AdS/CFT is a duality between a quantum theory on the
boundary and a gravitational one in the bulk, we can attempt to relate operators
in the two theories. The quantum gravitational theory at tree level admits an area
operator which is defined in the obvious manner—expectation value of the area
operator gives the classical area of the surface under consideration. The leading
term in the answer is then interpreted as the expectation value of the area operator
on the RT/HRT surface and the subleading term is the bulk entanglement entropy
for the bipartitioning engendered by this surface. There are speculations about
higher order corrections available in the literature [96], but unlike the 1-loop
term above, they involve making assumptions about the behaviour of quantum
gravitational dynamics. It remains an open question whether one can use string
theoretic considerations to pin down explicitly a perturbative expansion of SA in
a large ceff perturbation series.

It has recently been argued that (5.4.2) admits an interesting interpretation in
terms of relative entropy (2.5.1). Recall that the relative entropy can be expressed
in terms of the modular Hamiltonian KA. Under most circumstances, the modular
Hamiltonian is a complicated non-local operator since we are essentially defining
it as the logarithm of a linear operator on the Hilbert space. However, the
geometrization of the field theory entanglement entropy suggests that one can write
a simple relation between the field theory modular Hamiltonian and that of the
gravitational theory in the semiclassical limit [97]

KA D ceff h bArea.EA/ i C Kbulk
RA C O.c�1

eff / : (5.4.3)

This expression implies that the bulk and boundary relative entropies agree.
Consider two field theory states � and � and their corresponding bulk duals. We will
use the former as our reference state and constrain the latter to be a small excitation
about it. The restriction is to ensure that in the gravitational dual we can consider
the geometry dual to � as the background and the excitations in � will be viewed as
a few particle states atop this semiclassical background. We can then carry out the
bulk semiclassical analysis as above and learn from the behaviour of the modular
Hamiltonians that

SB.�Ajj�A/ D SM.�RA jj�RA/ ; (5.4.4)

with the subscriptsB andM referring obviously to the field theory and semiclassical
gravity. In other words, to the leading order semiclassical approximation, the bulk
and boundary modular Hamiltonians agree. These observations will be very useful
in understanding the reconstruction of the bulk geometry from the field theory, cf.,
Chap. 13.



Chapter 6
Properties of Holographic Entanglement
Entropy

The holographic RT and HRT prescriptions allow us to explore general properties
of entanglement entropy in a class of QFTs. We will first examine the consistency
of holographic entanglement entropy with expectations that follow from the basic
definition as detailed in Sect. 2.4. We will also see that there are certain features that
are peculiar to holographic systems, in part owing to the fact that we are working
in the large ceff limit. We reiterate that the holographic entanglement entropy
prescriptions are geared to capturing the leading semiclassical part of entanglement
in terms of geometric data. Subleading corrections require ascertaining the bulk
entanglement, as discussed in the previous section. All in all, this leads to some
unexpected features, which at first sight seem unconventional, but are easily
understood once one fully appreciates the implications of the limit ceff 
 1 being
effectively a semiclassical regime of the QFT.

6.1 An Extremal Surface Primer

Let us first discuss general strategies for determining extremal surfaces in an
asymptotically AdS spacetime. Imagine that we have a QFT living on a background
Bd and we are given the metric h�� on this boundary geometry. In addition, we will
assume that B admits a foliation by a timelike coordinate t and we can describe the
induced geometry on constant t slices. On such Cauchy slices we demarcate a region
A with boundary @A.

We pick coordinates � i on the entangling surface and view the embedding @A �
B being given by a set of mappings x�.� i/. From this information, we can naturally
deduce the geometry of @A. The intrinsic geometry of the surface is determined by
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the induced metric, which is pulled back from the parent spacetime, viz.,

ds2@A D h��
@x�

@�a

@x�

@�b
d�a d�b � Q�ab d�a d�b : (6.1.1)

The extrinsic geometry is obtained by examining the gradients of the normal
directions to this entangling surface using the boundary analog of (4.3.4).

In the bulk, we have a geometry M, dual to the state of the field theory on B. The
precise details of the geometry will depend on the state in question. We should note
however that the precise criterion states of the field theory which are well described
by semiclassical bulk geometries is far from clear, though progress has been made in
recent years. We will review some of these issues later in our discussion in Chap. 13.

Assuming for the moment that the state of the QFT does have a classical gravity
dual, we choose to parameterize the bulk geometry for definiteness in the Fefferman-
Graham gauge [98] (see also [99] for its role in AdS/CFT), where one fixes a radial
gauge Gzz D 1

z2
and Gz� D 0. The bulk metric can thus be taken to be of the form

ds2M D gAB dX
A dXB D dz2

z2
C 1

z2
g��.x; z/ dx

� dx� (6.1.2)

6.1.1 Near-Boundary Geometry and Energy-Momentum
Tensor

The metric function g��.x; z/ admits a Taylor series expansion (with zero radius
of convergence) in the neighbourhood of the boundary. The result depends on the
boundary spacetime dimension being even or odd, since the latter case allows for
the possibility of conformal anomalies.

One finds the schematic form (for explicit expressions, we refer the reader to
[99])

g�� D h��.x/C z2 h.2/��.x/C z4 h.4/��.x/C � � � C z2k h.2k/�� .x/C � � �
C zd log z h.d/.x/C zd T��.x/C O.zdC1/ (6.1.3)

The expansion proceeds in even powers of z due to the structure of Einstein’s
equations. The logarithmic term is only present in even d-dimensions and is related
to the fact that the CFTs in even spacetime dimensions suffer from a conformal
anomaly. The leading term h��.x/ and the ‘constant of integration’ T��.x/ are
sufficient data to determine the series solution completely. The terms h.2k/.x/ with
0 	 k 	 d

2
are completely determined by the boundary metric h��.x/ and its

derivatives (intrinsic curvatures). For instance, the first few terms in this expansion
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are:
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(6.1.4)

The new piece of data in this expansion at O.zd/, T��.x/ corresponds to the
expectation value of the energy-momentum tensor on the boundary. This cannot
be determined by the local analysis and one needs detailed information of the
state, in particular, to construct a geometry that is regular (everywhere outside
putative horizons) to ascertain h T�� i. How this can be done is well explained in
the literature, so we will assume henceforth that we have been handed the geometry
of interest.

The boundary energy-momentum tensor is given as [100, 101]

h T�� i D d ceff
�
t�� C C��Œh�

�
(6.1.5)

where C��Œh� is a local functional of the boundary metric and its derivatives,
capturing the contribution of the Weyl anomaly. It vanishes in d D 2n C 1 but
depends non-trivially on the dimension for d D 2n. For instance:

d D 2 W C��Œh� D h�� Tr
�
h.2/

�

d D 4 W C��Œh� D �1
8

�
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�
h.2/

�2 � �
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�
h.2/

��2�
h�� C 1

2

�
h2.2/

�

��
� 1

4
h.2/�� Tr

�
h.2/

�

(6.1.6)

It is more useful to record a covariant expression for the boundary energy-
momentum tensor that is not tied to a specific gauge. Let the unit outward normal to
the boundary be given by n�. We define the extrinsic curvature of the boundary by

K�� D h��D�n� (6.1.7)
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We then choose to regulate the spacetime with a rigid cut-off at z D �c, or
equivalently, r D ƒc in global coordinates and find [101]:

T�� D lim
ƒc!1

4� ceffƒ
d�2
c

�
K�� � K h�� � .d � 1/ h�� � 1

d � 2
�
hR�� � 1

2
hR h��

��

(6.1.8)

6.1.2 Extremal Surface Determination

The HRT prescription requires that we find a bulk extremal surface in (6.1.2). We
can parameterize the surface by intrinsic parameters � i, and assume that XA.� i/ is
the surface of interest. In analogy with the boundary discussion, we determine the
induced metric whose area form we wish to extremize. One has

ds2EA D 1

z2

�
@z

@� i
@z

@� j
C g��.x; z/

@x�

@� i
@x�

@� j

�
d� i d� j : (6.1.9)

We now can set up a variational problem defined by an action, which is nothing but
the area functional of EA in units of the AdS Planck length, viz.,

Sextremal D `d�1
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4G.dC1/
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dd�1�

1
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�
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(6.1.10)

The Euler-Lagrange equations for this system with boundary conditions

EA
ˇ̌
z!0

D @A (6.1.11)

sets up the problem of finding extremal surfaces. Once we have found the surface of
interest, we simply evaluate its area as the on-shell value of the action (6.1.10). Note
that we can use (4.2.2) to write the result purely in terms of the boundary quantities.
Various authors have studied a wide range of examples over the years and in most
cases the analysis can be readily done using standard numerical techniques.

The standard way to proceed in static spacetimes with adequate symmetries
is to exploit the symmetries, using the associated conserved charges, reducing
the equations of motion following from (6.1.10) to a sufficiently amenable form,
and then integrating them. Typically, one ends up considering situations in which
the symmetries allow for reducing the equations of motion to a set of ordinary
differential equations which can usually be solved through a shooting method. This
usually relies on ascertaining (again through symmetry) the deepest point in the bulk
attained by the minimal surface and integrating out from there towards the boundary.
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One can then generally determine the boundary endpoints numerically as a function
of the coordinates of the deepest point and invert if necessary. This strategy works
well as long as care is taken to ensure that we work with appropriately regulated
boundary conditions. One then has to plug the solution into the action Sextremal and
evaluate its on-shell value. This can potentially be a source of errors, since one
would like, at the end of the day, to obtain a UV regulated area.

In some cases, it turns out to be efficient to adopt a gauge choice for �a that
simplifies the action functional itself. In addition to picking a convenient gauge, one
can also set up in the case of static spacetimes, a mean curvature flow, a relaxation
algorithm that locates the minimal area surface directly; see Appendix A of [102]
for details of this construction. There are also some sophisticated software packages,
such as Surface Solver [103], developed for solving the Plateau problem in flat
space, that have been exploited to construct exotic minimal surfaces in AdS4 for
a wide range of domains [104, 105].

In the general time-dependent setting, one has to resort to either the shooting
method described above or directly solve the resulting PDEs. It is interesting to
contemplate exploiting the maximin construction to develop a Lorentzian analog
of the mean curvature flow. A naive attempt is guaranteed to fail due to the fact
the Lorentzian problem does not involve elliptic of PDEs courtesy of the temporal
direction. We are not aware of an explicit implementation of such an algorithm
to date, but this would allow one to explore general properties of entanglement
dynamics in inhomogeneous time-dependent backgrounds.

Let us illustrate this discussion with various examples, which will prove useful
in our discussions to follow. We will restrict the domain of the bulk AdS spacetime
to the region z > � to regulate the computation of the area integrals. This will serve
as a UV cut-off in the field theory.

Vacuum State of CFT2 on R
1;1

We take the region to be an interval of size 2a centered around the origin, viz.,
A D fx 2 Rjx 2 .�a; a/g. The dual geometry we need is the Poincaré-AdS3
spacetime (4.2.5) with d D 2. Restricting attention to t D 0 by virtue of staticity,
we find that we need to find a spacelike geodesic in the xz plane. This can be done
by writing down the induced metric on a curve and the geodesic action:

S D 4� ceff

Z p
x0.�/2 C z0.�/2

z
d� (6.1.12)

Varying this action, one can check that the resulting equations of motion are solved
by a semi-circle in the xz plane, cf., the illustration in Fig. 6.1

x.�/ D a cos � ; z.�/ D a sin � (6.1.13)
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Fig. 6.1 Sketch of an
extremal surface in pure
AdS3 in Poincaré coordinates

A

EA

x

z

and the length of this curve evaluates for us the entanglement entropy.
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Z �
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�
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D 8� ceff log
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3
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(6.1.14)

In evaluating the integral, we converted the UV cut-off z D � into a restriction on
the domain of the affine parameter along the curve. In the final step we used the
Brown-Henneaux result [106] that the asymptotic symmetry group of AdS3 is a
Virasoro algebra with central charge c D 3 `AdS

2 `P
to write the answer in terms of the

true central charge (as opposed to ceff). This simple computation agrees explicitly
with the CFT2 result (3.1.6). This is no coincidence, for in both cases, the result is
dictated purely by the conformal symmetry and we have indicated that the result is
universally determined simply by the central charge.

We have remarked in Chap. 3 that the computation of entanglement entropy
for multiple disjoint intervals in a CFT is a formidable task. The holographic
answer however turns out to be very simple. Let us consider A D [i Ai with
Ai D fx 2 Rjx 2 .ui; vi/g. Then we can consider geodesics that connect the left
endpoint of one-interval, say Ai, with the right endpoint of any other Aj (including

itself). The lengths of such geodesics are simply proportional 2 log jui�vjj
�

. The
holographic answer is then simply

SA D min
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@ c

3

X

.i;j/

log
jui � vjj
�

1

A ; (6.1.15)

with the sum running over all pairs of choices from which we pick the globally
minimum result. For instance, for two intervals, we have
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C log
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�
; log

ju1 � v2j
�

C log
ju2 � v1j

�

�

(6.1.16)

This is illustrated in Fig. 6.2; basically one is instructed to draw all the extremal
surfaces subject to the homology constraint. We will explore the implications of this
result in the following.
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Fig. 6.2 Sketch of the two
potential extremal surfaces
for a disjoint union of two
regions A1 and A2. We either
have the union of the two
individual extremal surfaces
EA1 [ EA2 or the surface
EA1A2 which connects the
two regions. Of these, the one
with minimal area gives the
entanglement entropy for
A1 [ A2

A1 A2

EA1

EA2

A1 A2

EA1A2

Vacuum State of CFTd on R
d�1;1

In higher-dimensional field theories, the vacuum state on Minkowski space is dual to
the Poincaré-AdSdC1 geometry. However, we have a multitude of regions to choose
from as we can pick any codimension-1 region sitting inside R

d�1. There are two
obvious regions of interest, which are worth analyzing in detail:

• Strips: These are regions preserving .d�2/-dimensional translational invariance.
We can choose coordinates to describe the region as

Ak D fxd�1 2 R
d�1jx1 2 .�a; a/; xi 2 R for i D 2; 3; � � � d � 1g (6.1.17)

Given the symmetries, we adapt the coordinates �a D xa and find
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(6.1.18)

In deriving the equation of motion, we made use of the x1 independence of the
action to write down a conserved quantity, which we expressed in terms of z�, the
turnaround point of the surface in AdS. One can solve the for the surface explic-
itly in terms of hypergeometric functions; we give the expression for the two
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lobes of the surface x1 > 0 and x1 < 0 which smoothly meet at x1 D 0; z D z�:
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(6.1.19)

The area of the surface can be readily computed. Introducing an IR regulator L
for the translationally invariant directions, we have
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D 4� ceff
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(6.1.20)

The leading divergent term scales like the area of @A; we will see that this is
generic in holographic theories in due course. The absence of any subleading
divergences is due to the fact that the entangling surface is both intrinsically flat
and has no extrinsic curvature. This, in particular, guarantees the vanishing of the
logarithmic term in even spacetime dimensions, which would have arisen due to
the conformal anomaly.

• Spherically symmetric ball-shaped domains: These are regions which preserve a
SO.d � 2/-dimensional spherical symmetry, viz.,

A D fxi 2 R
d�1j

d�1X

iD1
x2i 	 R2g (6.1.21)

Now it is simpler to adapt coordinates � to be the radial coordinate (r) of the Rd�1
and take the remaining coordinates to be the angular directions of the Sd�2 �
R

d�1. The minimal surface is determined by the Euler-Lagrange equations of the
action,

S D 4� ceff !d�2
Z

d�
�d�2

zd�1
p
1C z0.�/2 : (6.1.22)

Here !d�2 D 2 �
d�1
2

�. d�1
2 /

is the area of a unit Sd�2. The equations of motion

are simpler than they appear at first sight; despite their not being amenable
to integration by quadratures, one can check that the minimal surface is a
hemisphere:

z2 C �2 D R2 ; fz D R cos � ; � D R sin �g : (6.1.23)
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The entanglement entropy is evaluated by the integral:

SA D 4� ceff !d�2 Rd�2
Z �
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� �
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.sin �/d�2

.cos �/d�1 (6.1.24)

The final expression after performing the integral is given in Eq. (6.1.56). We will
give an alternate method to derive this answer later, one which exemplifies some
important features of this geometry.

CFT2 on S1 � R

As discussed earlier, this configuration can be used to describe the vacuum state of
the CFT on a finite spatial domain (a circle) or a thermal state in non-compact space.

• Let us first discuss the vacuum state, whence the bulk geometry has the
metric (4.2.4) (with d D 2), which we rewrite for convenience as

ds2 D �. r2

`2AdS

C 1/ dt2 C dr2

r2

`2AdS
C 1

C r2 d'2 (6.1.25)

We have to find a spacelike geodesic at t D 0, which is easily done. We take the
region A to be an arc of the ' circle centered around the origin of angular width
2'A. The reader can verify that

r.'/ D `AdS

�
cos2 '

cos2 'A
� 1

�� 1
2

(6.1.26)

is the locus of the geodesic. These are plotted on the Poincaré disc in Fig. 6.3.
Upon evaluating the length of the curve, we find

SA D c

3
log

�
`S1

� �
sin

�
2a

`S1

��
(6.1.27)

where we translated in terms of the arc-length a of the region (`S1 is the proper
radius of the circle) and used the Brown-Henneaux result again. This again agrees
with (3.1.7) for reasons outlined earlier.

• The thermal state of the CFT2 on non-compact space x 2 R is described by the
planar BTZ geometry

ds2 D � .r
2 � r2C/
`2AdS

dt2 C dr2

r2 � r2C
C r2

`2AdS

dx2 (6.1.28)
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Fig. 6.3 Plot of minimal
surfaces on the Poincaré disc
(6.1.26). We have
compactified the Poincaré
disc by the map r D tan % to
bring the boundary to finite
distance. The minimal
surfaces are geodesics in this
case and we have illustrated
these for varying angular
region size. Purity of state
implies that A and Ac

coincide

The extremal surface satisfies:

dr

dx
D r

`2AdS

s

.r2 � r2C/
�
r2

r2�
� 1

�
; r� D rC coth.a rC/ (6.1.29)

where r� is determined by restricting the range of x 2 .�a; a/. We can compute
its length and obtain the answer for the entanglement entropy:

SA D c

3
log

�
ˇ

� �
sinh

�
2� a

ˇ

��
(6.1.30)

which agrees with (3.1.8) as we anticipated. To write the answer in this form, we
used the fact that BTZ black hole of radius rC corresponds to a thermal state of
the field theory at T D rC

2� `2AdS
.

Thermal State of CFT2 on S1

The computation of entanglement entropy for a CFT2 on a compact space at finite
temperature is formidable. As indicated in Chap. 3, the Rényi entropies computing
via replica require evaluating the partition function of the theory on arbitrary
genus Riemann surfaces, cf., Fig. 3.1. However, the holographic computation may
be performed without much difficulty. The dual geometry is the global BTZ
spacetime (4.2.11). Setting `AdS D 1 for simplicity, it is a simple matter to find
the minimal surfaces for regions A D f' W �'A < 'j < 'Ag. We simply need
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spacelike geodesics anchored at these boundary points which are given to be [107]

E .1/A W
	
t D 0 ; r D �.'; 'A; rC/ � rC

 
1 � cosh2.rC '/

cosh2.rC 'A/

!� 1
2 


(6.1.31)

These curves are plotted on the Poincaré disc in Fig. 6.4.
For a given angular arc on the boundary, there are two potential minimal surfaces,

one that stays homologous to the region (E .1/A above) and another that goes around
the black hole, viz.,the curve r D �.'; � � 'A; rC/ instead, as depicted in Fig. 6.5.
Accounting for the fact that we need to pick the globally minimal area surface in the
homology class of the boundary region, we find that the holographic entanglement

Fig. 6.4 Plot of minimal surfaces in the BTZ geometry the hyperbolic disc (6.1.31). The
conventions are as in Fig. 6.3, with the horizon shown as the blue dashed curve. The plot on the
left is for rC D 0:5 `AdS while that on the right is for rC D 1:2 `AdS

Fig. 6.5 The transition between the connected E .1/A and disconnected E .2/A minimal surfaces in a
BTZ black hole. We illustrate the situation for rC D 0:5 `AdS and rC D 1:2 `AdS
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entropy is given by

SA.'A/ D min

	
Area.E .1/A /

4G.3/N

;
Area.E .2/A /

4G.3/N



; (6.1.32)

where

E .2/A D ˚
t D 0; r D rC

�[ ˚
t D 0; r D �.'; � � 'A; rC/

�
: (6.1.33)

The final answer upon evaluating the lengths reduces to

SA D
8
<

:

c
3

log
�
ˇ

� �
sinh

�
R
ˇ
'A
��

; 'A < '
?
A

c
3
� rC C c

3
log

�
ˇ

� �
sinh

�
R
ˇ
.� � 'A/

��
; 'A � '?A

(6.1.34)

where we wrote the answer for a spatial circle of size R. We also introduced the
critical angular scale '?A where the two saddles of the area functional exchange
dominance; explicitly

'?A.rC/ D 1

rC
coth�1 .2 coth.� rC/� 1/ ; lim

rC!1 '?A.rC/ D � : (6.1.35)

This phenomenon is indicative of a very general behaviour called the entan-
glement plateaux in [102]. We will explain this more generally when we analyze
holographic entropy inequalities in Sect. 6.3, for it corresponds to the saturation
of the Araki-Lieb inequality. Note that the transition point approaches the size of
the entire system as the temperature increases as noted above. Thus in the high
temperature limit, the entanglement plateau transition scale approaches the size of
the system.

Thermal State of CFTd on R
d�1;1

The geometry dual to the thermal density matrix of the CFT at temperature T is
given by the planar Schwarzschild-AdSdC1 black hole (4.2.9) with the relation T D

d
4� zC

.1 The computation is easily done for either the strip-like regions (6.1.17) or

1We now set `AdS D 1 to avoid cluttering up the notation. It can be reinstated through dimensional
analysis.
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Fig. 6.6 Minimal surfaces in the planar Schwarzschild-AdS5 spacetime for a black hole of size
zC. We pick the boundary region to be a strip of various widths, such that the turning point of the
surface, z�, occurs at z� D 0:5zC, z� D 0:9zC and z� D 0:99 zC, respectively

the ball-shaped regions. The minimal surface action can be easily seem to be,

SAk
D 4� ceffL

d�2
Z

dx1
1

zd�1

s

1C z0.x1/2
f .z/

SA D 4� ceff !d�2
Z

d�
�d�2

zd�1

s

1C z0.�/2
f .z/

(6.1.36)

in the two cases of interest. We again use L as the IR regulator of the translationally
invariant directions for the strip. The equations of motion are easy enough to derive,
but not trivial to solve. For spherical domains, one can solve for the minimal surface
in terms of Appel functions, but the resulting expression is unilluminating. It is more
useful to examine the behaviour of the surfaces in the geometry, which are plotted
in Fig. 6.6.

For small regions A on the boundary, the extremal surface lies close to the
boundary. Using the scale/radius duality, we conclude that the holographic result
only captures the UV sensitive part of the entanglement entropy. On the other hand,
once we start to look at regions which are large compared to the thermal scale, then
the extremal surfaces dip further down into the bulk. However, in static geometries
they cannot penetrate the black hole horizon [108] (as long as they are anchored on
the same boundary). This means that they get down nearly as far as the horizon, the
turn-around point z� ' zC, and straddle the horizon for almost the entire length
of the region before returning to the boundary. This is clearly seen in the plots
displayed in Fig. 6.6.

The behaviour of extremal surfaces is in accord with our expectation for
entanglement entropy in a thermal state. For small regions A, the density matrix
�A only carries the universal UV data which scales like the area of the region:
SA � Area.@A/

�d�2 as always. However, on macroscopic scales compared to the thermal
scale, the area of the extremal surface exhibits extensive volume law behaviour from
the IR; the contribution from the part that hugs the horizon scales like Vol.A/ Td�1.
This conforms to the general expectations elucidated in Sect. 2.4.1.



78 6 Properties of Holographic Entanglement Entropy

CFTd on Sd�1 � R

We can discuss both the vacuum state and the thermal state. For the vacuum state,
the dual geometry is the global AdSdC1 spacetime in Eq. (4.2.4).

The dual of the thermal state in finite spatial volume is more intricate. At high
temperatures the dual geometry is the global Schwarzschild-AdSdC1 black hole.
For these solutions, the temperature of the black hole, which is the same as the field
theory temperature, is given in terms of the horizon radius as noted in Eq. (4.2.10).

Since they only exist above a minimum temperature, T >
p
d.d�2/
2� `AdS

, it is clear that the
low temperature phase has to be dominated by some other configuration. The only
other solution satisfying the boundary conditions is the thermal AdS spacetime. This
has the same metric as the global AdSdC1 solution except that the Euclidean time
circle is periodically identified.

It turns out that the global black holes dominate only when their horizon size is
larger than the AdS scale, i.e., �C � `AdS, and not at the point where they come into
existence. The system is characterized by a first order phase transition in the CFT
[109] at Tc D d�1

2� `AdS
called the Hawking-Page transition [110]. The low temperature

phase of the thermal CFTd, with T < Tc is thermal AdSdC1 geometry, while the high
temperature phase is always dominated by the black hole.

We take the region A to be a polar-cap of the boundary Sd�1. Picking coordinates
f� 2 Œ0; � �d�2g on the Sd�1 such that the metric takes the form d�2

d�1 D d�2 C
sin2 � d�2

d�2 we have the SO.d � 2/ symmetric region

Apolar�cap D f�;�d�2j0 	 � 	 �Ag (6.1.37)

The minimal surface can be found from the action:

S D 4� ceff !d�2
Z

d� .� sin �/d�2
s

1

f .�/

�
d�

d�

�2
C �2

�
d�

d�

�2
(6.1.38)

where we have left � as the coordinate along the surface without gauge fixing it.
The surfaces have to be found numerically in this case. Computationally, it turns

out to be simplest to work in a gauge where

r
1

f .�/

�
d�
d�

�2 C �2
�
d�
d�

�2 D 1, so that

the evaluation of the on-shell action becomes less prone to numerical errors. In the
global AdSdC1 case, the extremal surfaces are analogous to those in global AdS3 in
Fig. 6.3. The black hole spacetime deforms the surfaces away from the horizon; a
set of surfaces for the Schwarzschild-AdS5 black hole are depicted in Fig. 6.7.

There are some salient features worth noting in the high temperature phase
described by the global Schwarzschild-AdSdC1 spacetime. For small regions, the
minimal surfaces are similar to that in the global AdS5 geometry, albeit with small
deformations to account for the presence of the black hole. The deformations get
larger with the surfaces wanting to stay away from the horizon as in the planar case.
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Fig. 6.7 Minimal surfaces in the global Schwarzschild-AdS5 spacetime (figure from [102]). The
left panel shows a small black hole rC D 0:2 `AdS while the right panel is for rC D `AdS.
Apart from the fact that surfaces are repelled by the horizon, the absence of connected minimal
surfaces for large regions is worth noting. We don’t display the multiply wrapped surfaces around
the horizon discovered in [102]

Rather curiously, for sufficiently large regions, we find that there is no connected
minimal surface! More precisely, for a given black hole size rC, there exists a critical
boundary region size, beyond which one finds no single connected minimal surface
which satisfies the homology constraint. The only minimal surface is the surface
corresponding to the smaller complementary region.

As in the BTZ discussion above, to satisfy the homology constraint one needs to
take into account this surface for the smaller region and the bifurcation surface of
the black hole event horizon. Once again this exemplifies the entanglement plateaux
phenomenon, which we discuss in detail in Sect. 6.3. The absence of connected
minimal surfaces for large regions can be inferred from the causality constraints
on the RT/HRT construction. As explained in [111], the causal domains for finite
boundary regions in the global Schwarzschild-AdSdC1 black hole can have non-
trivial topology. These in turn lead to a restriction on where the extremal surfaces
can lie, following from the fact that the causal wedge of the boundary domain of
dependence has to be contained within the entanglement wedge. This forces the
extremal surfaces to split. We will explain these concepts in Chap. 13.

There are also some other peculiar properties of minimal surfaces in the global
black hole spacetime. One finds subdominant saddle point solutions with the
surfaces wrapping the horizon multiple times [102]. They play no role in the
study of entanglement, but their presence points to the non-trivial interplay of the
minimality/extremality condition with steep gravitational potential wells.

In the low temperature phase, we are in the thermal AdSdC1 geometry. Since
we are looking at entanglement entropy at a fixed time slice, the identification of
the Euclidean thermal circle is irrelevant. The extremal surfaces are the same as
in the vacuum case, so we learn that for any boundary region, the result for the
entanglement entropy coincides with its value in the vacuum. While this a-priori
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sounds bizarre, we are so far only talking about the leading part of the answer in
the ceff ! 1 limit. There are corrections to the semi-classical result coming from
the bulk entanglement entropy at O.1/ explained in Sect. 5.4, which pick out the
thermal contributions. This example will be helpful in building intuition about the
connection between field theory entanglement and bulk geometry.

In the thermal state of the field theory, we have a density matrix for the entire
system and our considerations involve looking at subregions A. We could however
take the full system, in which case the entanglement entropy will actually compute
the thermal entropy. This has a nice geometric interpretation using the thermofield
double construction. The thermal entropy is the entanglement entropy of two copies
of the system in the thermofield double state. In the black hole phase, the two copies
are the two causally disconnected asymptotic regions, while in the low temperature
phase, they are two copies of the AdS geometry with no macroscopic entanglement.

Spherical Domains of a CFT Vacuum

Finally, let us return to the example of spherical domains in the vacuum state of
a CFT. We have already seen how to compute the minimal surfaces directly using
the RT prescription. One can however make some general observations based on
symmetry considerations as explained in Casini, Huerta, and Myers [83]. These
domains preserve a SO.d � 2/ rotational symmetry which we exploit fully below.

A Sequence of Conformal Maps Let us consider a ball-shaped region Aball �
A � R

d�1;1.2 The domain of dependence DŒA � is a double-cone, with two apices
p˙ D ft D ˙R; xd�1 D 0g at the future and past, respectively. We have already
noted that the entanglement entropy is a wedge observable, and takes the same value
of any Cauchy slice contained in the domain of dependence of the region in question.
A geometric fact which is useful is the realization that DŒA � can be conformally
mapped to a hyperbolic cylinder Hd�1 � R, as depicted in Fig. 6.8.

To see this, start with flat space in polar coordinates adapted for the spherically
symmetric ball A :

ds2 D �dt2 C dr2 C r2 d�2
d�2 ; (6.1.39)

and consider the coordinate transformation:

t D R
sinh

�

R

�

cosh u C cosh
�

R

� ; r D R
sinh u

cosh u C cosh
�

R

� : (6.1.40)

2With minor changes, we can make similar observations for the polar-cap regions of Sd�1 � R.
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t(τ, u) , r(τ, u)

τ

Fig. 6.8 The domain of dependence of a disc in R
2 � R

1;2. By the conformal map (6.1.40) the
interior of this domain is mapped to the hyperbolic cylinder H2 � R

Under this transformation, the metric (6.1.39) becomes

ds2 D 1
�
cosh u C cosh

�

R

�2

 
� d2 C R2

�
du2 C sinh2 u d�2

d�2
�
!

(6.1.41)

which one recognizes to be conformally related to the metric on the .d � 1/-
dimensional hyperbolic space Hd�1 (i.e., Euclidean AdSd�1) direct product with a
timelike direction parameterized by  . We refer to this spacetime as the Lorentzian
hyperbolic cylinder R � Hd�1.

Now the metric on the hyperbolic cylinder can be related by a second con-
formal mapping to a more familiar spacetime, the Rindler geometry, which is
flat space written in boosted coordinates. This second set of transformations is
simply achieved by writing the metric of Hd�1 in Poincaré coordinates adapted to
translational symmetry; we have

ds2 D 1
�
cosh u C cosh

�

R

�2

 
� d2 C dz2 CPd�1

iD2 dXidXi

z2

!

� 1

z2
�
cosh u C cosh

�

R

�2

 
� z2 d2 C dz2 C

d�1X

iD2
dXidXi

!
(6.1.42)

While we could have directly attained this geometry starting from the flat metric,
the intermediate step of having the hyperbolic cylinder will be useful momentarily.
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In any event, we can follow the spherical domain through the coordinate
transformations. We learn that the region r 	 R is mapped under (6.1.40) to the
entire hyperbolic geometry Hd�1. One can think of this map as zooming out the
entangling surface to infinity and zooming into the region A. Direct information
about the complementary region Ac gets lost in the process. Its fate should become
clear as we consider the nature of the density matrix and the holographic picture.

The hyperbolic space is the region z � 0 in the Poincaré coordinates. The
final metric we have written is (conformally equivalent to) the Rindler coordinates
fz; t;Xig on flat space, with  being the Rindler time coordinate. We can pass to
Cartesian coordinates by the simple expedient of setting

X1 ˙ X0 D X˙ D z exp
�
˙ 

R

�
: (6.1.43)

The entangling surface is now mapped to z D 0, which is the bifurcation surface of
the Rindler wedge in R

d�1;1, i.e., Xpm D 0. The Rindler wedge can be thought of
as the casual development of the half-space X1 > 0 and what we have established is
that this is conformally equivalent to DŒA �. This sequence of maps is illustrated in
Fig. 6.8.

To take stock: the domain of dependence of a spherical ball in Minkowski space
is conformal to both the Rindler geometry and the hyperbolic cylinder. In the first
two descriptions, the domain of dependence of the complementary region remains
explicitly visible, but it gets pushed out by the conformal mapping in the third.

The Rindler Modular Hamiltonian The rationale for this rigamarole can now be
made transparent. Consider the Rindler geometry and focus on the reduced density
matrix �Rindler obtained on the half-space

ARindler D fX� 2 R
d�1;1jX0 D 0 ;X1 > 0g : (6.1.44)

A salient result in algebraic QFT due to Bisognano-Wichmann [112, 113] states that
the modular Hamiltonian corresponding to this density matrix KRindler is just the
Minkowski boost generator in the direction X1. It implements a modular evolution
as a Rindler time translation

KRindler W  7!  C 2� R s ; (6.1.45)

which, by passing to standard Minkowski coordinates X˙ D z e˙ 
R , can be seen

to be equivalent to a boost; X˙.s/ D e˙2� s. This can equivalently be understood
by noting that the Minkowski vacuum appears thermally populated to a uniformly
accelerated observer as noted by Unruh [114]. All in all this implies that the vacuum
modular Hamiltonian ARindler in any QFT can simply be written as

KRindler D 2�

Z

ARindler

dd�1X X1 T00.0;X/ : (6.1.46)
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The Modular Hamiltonian for the Spherical Ball We were interested in the
density matrix �A but what we have learnt so far is that �ARindler is amenable to
general treatment in any relativistic QFT. However, should the theory in question be
conformal, then by virtue of the fact that the vacuum state in Minkowski spacetime
j 0i is conformally invariant, we can infer properties of �A through the sequence
of mappings. As we will have many an occasion to refer to this density matrix, let
us give a new notation

�vac
A D � (6.1.47)

Since the conformal group leaves the state in question invariant, one concludes
that the reduced density matrices are related by a unitary transformation U: � D
U �ARindler U

�. Tracing through the sequence of coordinate transformations, one can
then show that the modular Hamiltonian for the ball-shaped domains in the vacuum
state of a CFT takes the form:

K D 2�

Z

A
dd�1x

R2 � r2

2R
T00.x/ (6.1.48)

Furthermore, since the various density matrices are related by unitary transforma-
tions, we end up with the same von Neumann entropy.

Thermal State on the Hyperbolic Cylinder While we now have the expressions
for the modular Hamiltonians, which can be exponentiated to obtain the density
matrices, one still has to learn to compute various entropies from them. This can
be achieved most efficiently by invoking the intermediate element in our mapping
sequence: the hyperbolic cylinder.

A Rindler observer sees the Minkowski vacuum as a thermal state in any field
theory. So the reduced density matrix for one Rindler wedge is simply a thermal
density matrix. Using the map to the hyperbolic cylinder, the reduced density matrix
induced Hd�1 must again be simply the thermal density matrix. In terms of the CFT
Hamiltonian HHd�1 we can therefore write:

KHd�1 D 2� R HHd�1 ; �Hd�1 D e�ˇHHd�1 : (6.1.49)

The temperature is aligned with the curvature scale of the hyperbolic space

T D 1

ˇ
D 1

2� R
(6.1.50)
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As noted earlier, the interior of A got mapped onto the hyperbolic space Hd�1,
and we are learning from this exercise that � is unitarily equivalent to a simple

thermal density matrix, viz.,

� D QU e�ˇHHd�1 QU� ; (6.1.51)

for some unitary QU that implements the geometric conformal map on the density
matrices.

Ergo, finding the von Neumann entropy in this particular case is tantamount to
studying CFT thermodynamics on a uniformly negatively curved hyperbolic space.
Moreover, taking powers of the thermal density matrix is achieved by dialing the
temperature. One can get S.q/A by simply tuning T ! 1

2� q R . This fact has been
exploited in various free field computations [115] and holography [116].

Holography and Hyperbolic Black Holes Finally, let us turn to the holographic
context. The RT minimal surfaces that compute the entanglement entropy for the
spherical domains are simply hemispheres in AdSdC1 respecting the SO.d � 2/

symmetry, cf., (6.1.23). We should now be able to arrive at the same result by
studying the thermal density matrix on the hyperbolic cylinder.

The AdS/CFT correspondence relates thermal states of the boundary CFT to
black hole geometries. Since the CFT has to be on a spatial Hd�1, our boundary
conditions require an asymptotically locally AdSdC1 spacetime whose boundary
is Hd�1 � R at the specified temperature. Spacetimes satisfying these boundary
conditions are the hyperbolic black holes [117]. Using the coordinatization of the
hyperbolic cylinder as in (6.1.41), we can write the metric of the one-parameter
family of hyperbolic-AdSdC1 black holes as

ds2 D �`
2
AdS

R2
fH.%/ d

2 C d%2

fH.%/
C %2

�
du2 C sinh2 u d�2

d�2
�
;

fH.%/ �
 
%2

`2AdS

� 1 � %d�2C
%d�2

 
%2C
`2AdS

� 1
!!

:

(6.1.52)

The parameter %C corresponds to the black hole mass. As always, it determines the
location of the horizon and fixes the black hole temperature:

T D `AdS

4� R

�
d %C
`2AdS

� .d � 2/

%C

�
: (6.1.53)

The reduced density matrix for the spherical region is related to the thermal
density matrix at a particular temperature given by (6.1.50). This is achieved by
choosing %C D `AdS.

For this choice, the black hole solution simplifies considerably. In fact, one can
check that for this choice of the horizon radius the solution (6.1.52) is simply the
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AdSdC1 spacetime in hyperbolic coordinates! An easy way to do this is to compute
the Riemann tensor and find it to be that of a maximally symmetric spacetime, viz.,
RABCD / gACgBD � gADgBC.

One can physically interpret the above result as follows: the conformal trans-
formation makes our reduced density matrix � unitarily equivalent to a thermal

density matrix. Moreover, the same transformation also blows up A at the expense
of sending @A to asymptotic infinity. In the holographic dual, we retain the interior
of a causal domain associated with the extremal surface mapping the rest of the
spacetime to infinity. This converts the spacetime into a black hole geometry, with
the minimal surface becoming the bifurcation surface of the black hole horizon. The
purifying complement Ac becomes the second asymptotic region in the spacetime,
since �H admits a nice thermofield double construction.

Once we have the solution, we can immediately extract the entanglement entropy
as the black hole entropy for the hyperbolic black hole. The Bekenstein-Hawking
formula requires the area of the bifurcation surface. This is the hypersurface % D %C
at  D 0 which is indeed extremal in the spacetime.

SHd�1 D SBH D !d�2 %d�1C
4G.dC1/

N

Z uumax

uD0
sinhd�2 u du

D 4� ceff !d�2
�
�i1�d cosh umax 2F1

�
1

2
;
3 � d

2
I 3
2

I cosh2 umax

��

(6.1.54)

One can also relate this expression to our previous answer (6.1.24). The transforma-
tion tan � D sinh u will convert that expression to the first line of the above.

The last step in relating this to the CFT data involves us matching the UV cut-off
� employed to regulate the entanglement of the spherical ball to an IR cut-off umax in
H. This can be worked out by following the coordinate transformations, obtaining

umax D � log
� �

2R

�
(6.1.55)

At the end of the day, one then finds

SA D 2

�
d
2�1

�. d
2
/

d � 2
ad

Area.@A/
�d�2 C� � �C

(
4 .�1/ d2�1 ad log 2R

�
; d D 2m ;

.�1/ d�1
2 2� ad ; d D 2m C 1 :

(6.1.56)

We have written the final answer for the entanglement entropy in terms of the area

of the entangling surface Area.@A/ D !d�2 Rd�2 and a parameter ad � 2�
d
2

�. d2 /
ceff,

which in even-dimensional CFTs coincides with the a-type component of the trace
anomaly. We will have more to say about the trace anomaly in Chap. 10.
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6.2 Holographic UV and IR Properties

In Sect. 2.4.1, we gave general arguments for the behaviour of entanglement entropy
in continuum QFTs. One of the issues we highlighted there was the area law
behaviour of the UV divergent term. One invoked the result by heuristically
appealing to the local nature of the QFT vacuum, and was well supported by
evidence from free field computations. We also saw there the imprint of IR scales in
the entanglement entropy, in particular, their contributions to the finite or universal
terms of entanglement entropy.

Let us now ask what the corresponding statements are in the holographic
descriptions. The discussion applies equally to the static and the time-dependent
scenarios captured by the RT and HRT prescriptions, so we will discuss them
simultaneously in what follows.

The first statement which is worth recording is that the extremal surfaces in AdS
end normally on the boundary. This is very intuitive for minimal surfaces: they
like to minimize their area, but the boundary of AdS extracts a steep gravitational
penalty owing to the conformal factor. So the surfaces of interest try to exit this
region as rapidly as possible. Thinking about the construction as a shooting-problem
should suffice to convince oneself that the surface departs into the bulk from @A
perpendicularly; this is clearly visible in the various examples discussed in Sect. 6.1
and is also illustrated in Fig. 6.9.

More explicitly, this statement can be confirmed rather explicitly by working
in the Fefferman-Graham coordinates (6.1.9). To leading order in the small z
expansion, we gauge fix one of the � to be the coordinate z, with the rest being
tangential to @A. Then it is straightforward to check that the induced metric on
extremal surfaces in the vicinity of z D 0 behaves as

ds2EA D 1

z2
�
dz2 C Q�ab d�a d�b C � � � � : (6.2.1)

in the coordinate charts as described in Sect. 6.1. With this information, we can
immediately see that:

Area.EA/ D
Z zIR

�

dz

zd�1

Z
dd�2�

p Q� C � � � D Area.@A/
�d�2 C � � � (6.2.2)

Fig. 6.9 Sketch of an
extremal surface indicating
that it ends normally on the
boundary

A

EA

x

z
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i.e., the area of the extremal surface diverges as expected, with the leading behaviour
being determined by the area of the entangling surface as in (2.4.1). These
statements follow essentially from the local near-boundary behaviour of the surface
and capture the UV properties of the entanglement.

One can be a bit more systematic and decipher the subleading divergences
explicitly; see [46] for some explicit expressions. In fact, the analysis of [100, 118]
can be used to immediately extract the universal terms in the entanglement entropy.
In even-dimensional field theories, the coefficient of the logarithmic divergent term
can be determined from the conformal anomaly of submanifolds immersed in the
asymptotically AdS spacetime. The explicit results given for various examples in
Sect. 6.1 provide clear illustration of this fact. One can indeed go on and extract the
subleading divergences which can be expressed in terms of the geometric data of
@A. In general, the subleading non-universal contributions are expressed in terms of
the intrinsic and extrinsic data of the entangling surface [119].

While that takes care of the UV properties, we can also understand geometrically
the IR features. Recall our dictionary between CFT states and dual geometries
in Sect. 4.2. The UV features in generic states are the same as in the vacuum;
geometrically this is clear, since the states in the Hilbert space of the QFT
correspond to geometries with the same AdS asymptotics. Different states will
however have very different bulk geometries and the differences will be most
pronounced in the core IR region (away from the boundary). As discussed earlier, a
clear example of such a situation is the geometry dual to a thermal state of the QFT
which is described by a black hole in AdS, cf., Fig. 6.6.

In any state other than the vacuum, we expect there to be non-trivial expectation
values of some field theory operator; at the very least we would have non-zero
energy-momentum in the state. In the dual geometry, this amounts to the presence
of gravitational or matter fields permeating the AdS spacetime, and deforming the
geometry, in particular, by giving rise to gravitational potential wells.

For example, in the case of a planar-Schwarzschild-AdSdC1 black hole, we have
only the metric degrees of freedom excited as in (4.2.9). The boundary thermal state
acquires a non-zero stress tensor

h T �
� i / ceff T

d
�
ı �� C .d � 1/ı t

� ı
�
t

�
; (6.2.3)

and the geometry has a steep gravitational potential owing to the presence of the
black hole. The behaviour of minimal surfaces anchored on some region A � R

d�1
has been described in Fig. 6.6; the presence of a black hole in the bulk deforms the
surfaces explicitly.

In general, positive energy sources in the bulk push the surfaces closer towards
the boundary, usually resulting in the increase of the entanglement entropy. In case
of the black hole we see the effect is to make the RT surface for a large spatial
regions straddle the horizon. It is then clear that when we consider regions A with
LA T 
 1, the dominant contribution to the entanglement entropy will arise from



88 6 Properties of Holographic Entanglement Entropy

the part of the surface lying close to the horizon. As there is no variation in the radial
direction, this will give a contribution which is proportional to the Vol.A/. In other
words, the IR contribution to entanglement entropy will be the macroscopic volume
law term. On the other hand, the UV contribution will arise from the part of the
surface connecting the horizon to the boundary, which leads to the usual area law
divergent term. What we see here is again the UV/IR correspondence at work. The
geometric picture makes clear that the origins of the IR contributions can be traced
to the geometry deep in the interior, while the asymptotic AdS structure always
ensures that we have the area law UV divergence.

6.3 Holographic Entropy Inequalities

Let us now turn to the inequalities satisfied by the holographic entanglement
entropy. As reviewed in Sect. 2.4.2, the very definition of SA as a von Neumann
entropy of a normalized Hermitian density matrix implies non-trivial inequalities
that must be satisfied. These must be upheld by the holographic prescriptions. For
otherwise, we would talking about quantities which have no intrinsic meaning in the
boundary quantum field theory, despite their geometric elegance.

Let us now take stock of the entropy inequalities in the holographic context. It is
useful to separate the discussion into the Z2 time-reflection symmetric case in which
the RT prescription suffices and the general story in time-dependent scenarios. An
excellent discussion of the geometric properties in the former case can be found in
[120].

Positivity of Entanglement Entropy This is obvious from both the RT and HRT
prescriptions, which relate the von Neumann entropy to an area of a spacelike
surface. The latter by definition has a positive definite area.

Subadditivity This too is straightforward considering that the leading divergent
term is given by the area of the entangling surface. Thus the leading terms already
suffice to show that the mutual information defined in (2.4.4) is non-negative
definite.

One can ask if the subadditivity inequality is saturated, which would correspond
to vanishing mutual information. Generically, this cannot happen since the mutual
information bounds the correlations between the two domains which for well-
behaved quantum states cannot be strictly zero.

However, it turns out that, to leading order in ceff, holographic theories can have
vanishing mutual information. The simplest configuration realizing this is the case
of two disjoint regions A1 and A2 which are spatially separated on a scale much
larger than the individual regions themselves. There are then two potential extremal
surfaces for A1A2. One is simply the disjoint union EA1 [ EA2 but there is a second
non-trivial surface EA1A2 that bridges the two regions as depicted in Fig. 6.2. The
entanglement entropy for this configuration is given in (6.1.16).
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From the explicit expression, one can check that the surface EA1A2 has a smaller
area when the regions are close together, but turns out to have a greater area in
comparison to the disconnected surface EA1[EA2 for larger separations. For simply-
connected domains on the boundary, these are the only two possibilities that respect
the homology constraint. Thus, when the two regions are far enough apart, we
naively predict that I.A1 W A2/ D 0. This statement however should be qualified,
since the area contribution only captures the leading large ceff part of the mutual
information. This is one of the peculiarities of the semi-classical limit.

This holographic result is also obtained from large c CFTs [121]; we will explain
this computation in Chap. 12. As discussed in Sect. 5.4, the bulk entanglement
entropy gives the leading order correction to this result and one indeed finds that
mutual information is O.1/ in the planar limit. This was explicitly verified in [95]
for two-dimensional CFTs at large central charge.

Strong Subadditivity The strong subadditivity inequality is an important con-
straint on the von Neumann entropy. The standard proof of this inequality [52]
hinges on some fundamental matrix identities for finite-dimensional systems. The
proof for continuum systems is considerably involved. One might hope that the
geometrization of entanglement entropy in the holographic context helps elucidate
some basic features. This indeed turns out to be the case.

The holographic proof of strong subadditivity was first given for the RT proposal
by Headrick and Takayanagi [122] and only much later was extended to the HRT
proposal by Wall [81]. We will now sketch the essential elements of the two proofs
which are extremely simple, and illustrate the power of geometrization. Since the
elements are slightly different for the two cases, we first start with the static RT case.

Consider the strong subadditivity inequality in the form (2.4.7) which we
reproduce here for convenience:

SA1A2 C SA2A3 � SA1A2A3 C SA2 ; (6.3.1)

For each of the regions A1A2, A1A3, etc., appearing in the inequality, we have
corresponding bulk minimal surfaces EA1A2 , EA2A3 , respectively, whose areas
compute the entanglement entropies of interest. All of the four minimal surfaces of
interest lie on a single bulk time-slice. We sketch in Fig. 6.10 the minimal surfaces
for a particular configuration of the regions, which we take to be contiguous for the
sake of simplicity.

At this point, it is important to keep in mind the homology constraint, whereby
we require EA in the bulk to be homologous to A on the boundary. Given the
configuration, we realize that we can recombine the minimal surfaces for the regions
on the l.h.s. viz., EA1A2 , EA2A3 by performing a local surgery, i,e. piecewise cutting
and gluing, to construct two new surfaces FA1A2A3 and FA2 that are homologous to
the regions A1A2A3 and A2 appearing on the r.h.s. Now while FA2 is homologous
to A2, it is clearly not the minimal area surface anchored on @A2. This would of
course be true even if we smoothed out the kink originating from our piecewise
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A1 A2 A3

EA1A2A3

EA1A2

EA2A3

EA2

Fig. 6.10 Sketch of the configuration for proving strong sub-additivity. We show the three
boundary regions A1, A2 and A3 and the extremal surfaces EA1A2 , EA2A3 , EA1A2A3 , and EA2

corresponding to the regions A1 [ A2, A2 [ A3, A1 [ A2 [ A3 and A2 , respectively. To prove
the desired inequality, we perform local surgery at the point indicated by the black dot (note that it
is a codimension-2 surface). Rejoining the red and green surfaces at this point to be homologous
to A2 and A1A2A3 , we arrive at the inequality (6.3.1)

construction, for by assumption EA2 is the appropriate minimal area surface. Note
that we are by construction assuming that EA2 provides the global minimum of the
area functional with the prescribed boundary conditions. It is then trivial to see that

Area .EA1A2 /C Area .EA2A3 / � Area .FA1A2A3 /C Area .FA2 /

� Area .EA1A2A3 /C Area .EA2 /
(6.3.2)

establishing at leading order in ceff the strong sub-additivity inequality. While we
have illustrated the essence of the argument presented in [122], there are some
subtleties that have to be dealt with to complete the argument in a watertight manner.
These are discussed in the original paper referenced above, and further commentary
can be found in [120]. We refer the reader to these sources for further discussion
and also for the proof of the alternate form of the inequality (2.4.8).

The simplicity of the proof of strong subadditivity for the RT proposal stems
from the fact that there is a single bulk Cauchy slice which contains all four surfaces
of interest. This makes it simple to see that the cutting/gluing construction we use
guarantees us a surface satisfying the homology requirement that has a larger area
than the true minimal surface. If we consider a similar configuration in the generic
time-dependent situation, we run into an essential difficulty. There is no single
Cauchy surface of the bulk that contains all four extremal surfaces. In general, the
surfaces span out a non-trivial codimension-0 region of the bulk, making it difficult
to implement a version of the above procedure.

The proof of strong subadditivity of the HRT proposal is greatly simplified by
resorting to the maximin reformulation of [81]. As explained at the end of Sect. 4.3,
the maximin construction proceeds by picking a bulk Cauchy slice Q†t corresponding
to a given region A � †t on the boundary. One then finds a minimal surface on this
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slice, and subsequently maximizes the area of minimal surfaces across a complete
set of Cauchy slices inside the FRW wedge of †t.

To see how this is useful for our present purposes, we first need the following
two results:

(i). If two regions A1 and A2 are related by an inclusion, say A2 � A1, then
there exists a bulk Cauchy slice which contains both EA1 and EA2 , with the
latter surface being spacelike to the former. This nesting property of extremal
surfaces was proved in [81].

(ii). If we start from an extremal surface EA corresponding to some region A and
follow a bulk null congruence of light rays, then the cross-sectional areas of the
sections of the congruence are necessarily bounded from above by the area of
the extremal surface in sensible theories of gravity. In Einstein-Hilbert theory,
this follows from the Raychaudhuri equation, assuming that the matter satisfies
a sensible energy condition, such as the null energy condition.

These suffice to give a proof of the HRT proposal satisfying the strong subad-
ditivity requirement. We consider the extremal surfaces EA1A2A3 and EA2 , which
by (1) lie on some common bulk Cauchy slice, say Q†t for definiteness. However,
nothing tells us that EA1A2 and EA2A3 also lie on this slice, but that is immaterial.
Irrespective of where these surfaces are, we are free to project them onto Q†t by
following the null congruence emanating from them. Viewing this as a projection
map P , we have two new surfaces PEA1A2 and PEA2A3 which are also now on Q†t.
The second result (2) guarantees that the area of the thus projected extremal surfaces
is smaller than the true result. We now have all the ingredients necessary to rerun the
local surgery argument, since all four surfaces are confined to a single slice. Putting
all the pieces together, we arrive at:

Area .EA1A2 /C Area .EA2A3 / � Area .PEA1A2 /C Area .PEA2A3 /

� Area.EA1A2A3 /C Area.EA2 / ;
(6.3.3)

where the first inequality hinges on gravity being attractive and the second follows
from the local surgery argument. Altogether this establishes the strong-subadditivity
result as desired for the HRT proposal.

Araki-Lieb Inequality The Araki-Lieb inequality (2.4.5) bounds the difference of
the entanglement entropies of a system and its complement in terms of that of the
total density matrix. However, as remarked in Sect. 2.4.2, its status as a fundamental
inequality is unclear. Since it follows from subadditivity via purification, it continues
to hold in holographic theories. Perhaps more intriguingly, it can actually be
saturated in these theories (at least to leading order in ceff).

The simplest situation illustrating this feature is the computation of entanglement
entropy of a thermal state of a CFTd on Sd�1 � R. We consider dividing the Sd�1
which is a Cauchy surface at an instant of time, say t D 0 w.l.o.g., into A and Ac.
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Fig. 6.11 The extremal
surfaces around a global AdS
black hole exhibiting the
situation in which the
Araki-Lieb inequality may be
saturated. For the region A
which is the greater fraction
of the boundary, there are two
extremal surfaces satisfying
the homology constraint: EA
and EAc [ Sd�1

bifurcation
respectively

A

EAc

EA
Sd−1
bifurcation

Further, let ˛ D Vol.A/
Vol.Sd�1/

denote the fractional size of the region A relative to the
entire system. The holographic dual of this state is a global Schwarzschild-AdSdC1
black hole whose spatial section is topologically non-trivial, owing to the presence
of the black hole horizon. On the t D 0 slice, the bifurcation surface which is a
Sd�1 � Schwarzschild-AdSdC1 is a non-contractible codimension-2 sphere.

For small regions A, viz., ˛ � 1, the entanglement entropy is given by the
area of the minimal surface which stays on one side of the black hole. However,
for regions which are sufficiently large (for ˛ exceeding 1

2
at least), we have two

potential contributions which are illustrated in Fig. 6.11:

(a) a single connected surface that is homologous to A, or
(b) a disconnected surface which comprises of the geodesic homologous to Ac and

the bifurcation surface of the horizon.

Moreover, as noted in Sect. 6.1, in d D 2, we have an explicit (6.1.34) exchange of
saddle, while for d > 2 and large enough regions, the Schwarzschild-AdS geometry
no longer admits connected minimal surfaces homologous to A.

Therefore, we find that once the boundary region A exceeds a critical size ˛ >
˛�, we have EA D EAc [ Sd�1

bifurcation leading to

SA D ScA C Sthermal (6.3.4)

which we recognize as saturation of the Araki-Lieb inequality. This phenomenon
was described in some detail in [102] in which the authors called it the entanglement
plateaux, owing to the saturation of entanglement entropy for a large region.

While we have argued for this effect in a particular state of a holographic CFT, it
turns out to be quite general and independent of the specific details of the regions and
the symmetries preserved by the state in question [102, 111]. One way to understand
the situation is as follows: We can associate two bulk domains corresponding to the
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domain of dependenceDŒA� of the regionA on the boundary. The first of these is the
causal wedgeWCŒA�which is simply the region of the bulk which can receive causal
communications from or causally communicate to DŒA�. On the other hand, the
extremal surface construction motivates the idea of an entanglement wedge WE ŒA�
which is the bulk domain of dependence of the homology surface RA. We will
describe these constructs in greater detail in Chap. 13.

The argument involves noting that the entanglement wedge has to contain the
causal wedge. Furthermore, it can independently be shown that causal wedges
in spacetimes can be topologically non-trivial. Formal arguments and explicit
examples in terms of black holes were given in [111], while examples involving
causally trivial spacetimes were constructed in [123]. Since the entanglement wedge
has to contain the causal wedge, the presence of the holes in the latter forces
the extremal surfaces to become disjoint. In other words, phenomena such as the
entanglement plateaux phenomenon will generically occur in holographic field
theories.

Other Entropy Inequalities The class of holographic field theories being a subset
of all quantum field theories leads one to ask if there are certain features of
entanglement that are specific to them. This is indeed the case, for holographic
entanglement entropy appears to satisfy a set of inequalities that are known to not
hold in other quantum systems. Many of these appear to hold in the semiclassical
limit. This behaviour is intimately tied to the fact that the holographic answer is
given by an extremization procedure subject to some global conditions.

a) Tripartite information inequality: The prototype example of such holo-
graphic inequalities is the so-called monogamy of mutual information [124].
Firstly, note that in general a quantum information theoretic function f is said to
be monogamous if

f .A1 W A2/C f .A1 W A3/ 	 f .A1 W A2A3/ : (6.3.5)

One can read (6.3.5) as saying that for an entanglement measure f , if subsystem
A1 is almost maximally entangled, both with subsystem A2 and a larger
one A2A3, then there is almost no entanglement between A1 and A3, viz.,
f .A1 W A3/ D 0. Monogamy of entanglement is then simply the statement
of subadditivity, which asserts the positivity of mutual information defined
in (2.4.4). To ascertain the monogamy properties of mutual information, one
defines the tripartite information I3:3

I3.A1 W A2 W A3/ D I.A1 W A2/C I.A1 W A3/ � I.A1 W A2A3/

D SA1 C SA2 C SA3 � SA1A2 � SA1A3 � SA2A3 C SA1A2A3 :
(6.3.6)

3This combination of entropies is also what appears in the computation of topological entanglement
entropy for 2C 1-dimensional theories, as originally described in [5].
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Monogamy of mutual information would then require that the tripartite informa-
tion be non-positive definite, I3 	 0 or equivalently.,

SA1 C SA2 C SA3 C SA1A2A3 	 SA1A2 C SA1A3 C SA2A3 (6.3.7)

Now it is known in simple quantum systems that the mutual information is not
monogamous. It is easy to find states of qubit systems that have positive I3, the
simplest example being provided by the GHZ state for four qubits. Note that we
need at least four components to write down a pure state with SA1A2A3 ¤ 0. For
the three qubit GHZ state, the I3 trivially vanishes; see [125] for a discussion of
I3 and other measures of entanglement in simple qubit systems.

On the other hand, the holographic entanglement entropy has I3 	 0, as
proved for the RT proposal in [124] and for the HRT proposal in [81]. The
basic idea of the proof in the two cases is similar to the discussion of the strong
subadditivity, viz., one examines the surfaces contributing to the l.h.s. of (6.3.7)
and shows by local surgery that they can be rearranged into contributions that
can be associated with the regions on the r.h.s., cf., [124, 81].

b) Holographic Entropy Cone: More recently, using properties of minimal sur-
faces [126] has derived an infinite set of entropy inequalities that are satisfied in
holographic theories (in time reversal symmetric situations). These inequalities
generalize the monogamy of mutual information, and carve out a convex
polyhedron in the space of entropies called the holographic entropy cone.

To understand this concept, consider a partitioning of a Cauchy slice of a
QFT into .n C 1/-parts, in which fA1;A2; � � � Ang are disjoint regions and the
final region AnC1 D �[n

iD1Ai
�c

is the purifier of the first n regions. From
the n-fundamental regions, we can form 2n � 1 disjoint unions. Letting I 2
f1; 2; � � � ; ng, we define AI D [i2I Ai to denote elements of this collection.
Associated with each of these regions is an entropy SAI . One wishes to ask what
constraints this collection is required to satisfy in order for the entropies to arise
out of a holographic theory.

The authors of [126] address this issue when the entropies are all obtained
from a RT minimal surface prescription for time-symmetric states of a holo-
graphic QFT.4 For fewer than five regions n 	 4, the only relevant inequalities
are the strong subadditivity inequality and the monogamy of mutual information.
For larger numbers of regions, new inequalities arise, though the full set of
inequalities for n D 5 is also as yet not fully determined. One infinite class
of inequalities is the cyclic inequality. Given n � 2 k C l regions Ai, and with
S.AIjAJ/ being the conditional entropy S.AI W AJ/ D SAIAJ � SAJ , these

4The corresponding question for classical entropies has been successfully addressed in [127, 128],
while that for quantum entanglement is as yet undetermined, though partial progress has been made
in [129, 130].
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inequalities can be expressed as

nX

iD1
S.Ai � � � AiCl�1 W AiCl � � �AiCkCl�1/ � SA1A2 ���An (6.3.8)

This family contains the previous known inequalities: the choice .n; k; l/ D
.2; 0; 1/ gives strong subadditivity and the choice .n; k; l/ D .3; 1; 1/ gives the
monogamy of mutual information. It is clear from the structure of the conditional
entropy that we will get alternating sums of regions and their partial unions of
varying degrees. The strongest inequalities are argued to occur for the choice
.n; k; l/ D .2m C 1;m; 1/.

There are a few other inequalities obtained in [126], which along with the
cyclic inequality share a basic property: a region Ai appears in a balanced form,
i.e., it occurs the same number of times on both sides of the inequality. This
feature enables the proof to proceed by a suitable surgery argument as in the
earlier discussion. The actual proofs and the determination of the inequalities is
done by mapping to a graph theory problem. We refer the reader to the original
paper for further discussion.

c) Open Questions: There are several open questions in the context of entropy
inequalities.

1. For one, it would be interesting to address whether the holographic entropy
cone obtained from the RT prescription agrees with that obtained from the
HRT prescription. As of now, the full set of inequalities that are valid for
arbitrary time dependence remains unclear and naive adaptations of the proofs
presented in [81] do not address all the inequalities obtained in [126].

2. A-priori it is remarkable that the holographic entropy cone is a polyhedral
cone, while the quantum entropy cone is in general not expected to be so. Is
the polyhedrality a special feature of holography or that of time-independent
states therein?

3. It would be interesting to understand the particularities of the entanglement
structure in states that satisfy the holographic inequalities.

These issues are important for ascertaining which states of a QFT could have
semiclassical gravitational duals.
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Chapter 7
Quantum Quenches and Entanglement

A simple but quite non-trivial class of non-equilibrium processes of a quantum
many-body system is quantum quenches. We start with a ground state j ˆ0i of a
certain Hamiltonian H0. At time t D 0, we suddenly change the Hamiltonian from
H0 to a new one H. The original state j ˆ0i no longer stays at the ground state
and starts to experience the time evolution for t > 0. Such a process is called a
quantum quench. In particular, when the Hamiltonian changes homogeneously over
the whole space, it is called a global quench [131, 132, 133], while if the change is
localized in a certain small region, it is called a local quench [134].

In global quench scenarios, we are imparting finite energy density into the
system. As such, we expect that quantum systems where interactions are sufficiently
strong will get highly excited and eventually reach thermal equilibrium. Therefore
a quantum quench offers us a clear and simple model of thermalization, which is
fundamentally important in non-equilibrium physics. It is important to note that the
time evolution for t > 0 is described by a unitary transformation. Therefore the
system is always described by a pure state. However, when we coarse-grain the
system and trace out parts of the total Hilbert space, we end up with a reduced
density matrix. If the part of the system retained is sufficiently small compared to
the system size, then we expect that the reduced density matrix should approach
that derived from the canonical distribution. In other words, small subsystems of
a macroscopic system are effectively thermalized by the part of the system we
trace out. This statement can be codified in terms of the eigenstate thermalization
hypothesis [135, 136].

Thus we cannot distinguish between the pure state of quantum quench and the
thermal mixed state merely by looking at coarse-grained physical quantities such as
correlation functions. However, if we study the entanglement entropy, then we can
get much more information to distinguish them because we can freely choose how
much we wish to trace out the system. Therefore the entanglement entropy can be
employed as a helpful physical quantity to study quantum quenches.
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It is also interesting to view quantum quenches from the viewpoint of AdS/CFT
correspondence. Since they describe thermalizations and we know that CFTs at
finite temperature are dual to AdS black holes, we naturally find that quantum
quenches are dual to the process of black hole formation. Several interesting results
have been uncovered on various fronts in the past decade, which we will now
describe. We first focus on the general statements that are upheld for quantum
quenches in CFTs and then proceed to describe their holographic counterparts.

7.1 Global Quantum Quenches in CFTs

We would like to focus on global quantum quenches in CFTs. We start with a ground
state of jˆ0i of gapped Hamiltonian H0 and we instantly turn off the mass gap at
t D 0, leading to a new Hamiltonian H of a CFT. Therefore this process produces
a class of excited states jˆ0i in CFTs. The total density matrix follows the unitary
time evolution for t > 0

�tot.t/ D e�i H t jˆ0ihˆ0 j eiH t: (7.1.1)

In principle, we can compute the entanglement entropy SA by tracing out �tot.t/
over a subsystem Ac as usual. However, in general, such a calculation is quite
complicated, and it is difficult to obtain analytical results. Therefore we would like
to consider a certain approximation, as we will describe below.

As we already explained, the HamiltonianH0 describes a quantum field theory of
massive fields. Let Mgap be the characteristic scale of this mass gap. At t D 0, this
mass gap is suddenly removed. The excitation modes with energy less than Mgap

are then freely propagating for t > 0, while those with higher energy fail to see a
difference between before and after the quench at t D 0. Therefore we can regard
the quench at t D 0 as a boundary in the spacetime, and only focus on the low energy
modes, which are now confined to the t > 0 domain of the post-quench spacetime.
This is conveniently expressed as follows1 [131] (see also [140, 141]):

jˆ0i ' e� 1
4 ˇ H jBi : (7.1.2)

Here ˇ is a regularization parameter of the quench process such that ˇ � 1
Mgap

. Note

that ˇ is different from the UV cut off of the CFT �. Owing to the factor e� 1
4 ˇH , the

modes with energy less than Mgap clearly observe the boundary, while higher energy
modes do not. We shall later see that the parameter ˇ can be interpreted in terms of
an effective (inverse) temperature of the excited system, justifying our notation.

1For a discussion of the limitations inherent in this approximation, we refer the reader to [137, 138,
139].
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The state jBi is referred to as a boundary state. It is defined as the state realized
when we impose rigid boundary conditions on the fields of our CFT. We will
focus on conformal boundary states; the boundary condition will be required to
preserve a part of conformal symmetry. Since the boundary is codimension-1 in
the spacetime, we require that it preserve SO.1; d/ out of the full conformal group
SO.2; d/ of CFTd . In the analysis below, we will mainly focus on two-dimensional
CFTs (d D 2) where we can obtain analytical results.

7.2 Boundary States in CFT2

The conformal symmetry of two dimensional CFTs is enhanced into an infinite-
dimensional symmetry called the Virasoro symmetry. This symmetry algebra is
described by two copies of Virasoro generators, denoted by fLngn2Z and f QLngn2Z
for the left and right-moving sector, respectively. They satisfy the Virasoro algebra:

ŒLn;Lm� D .n � m/ LnCm C c

12
.n3 � n2/ ınCm;0 ;

Œ QLn; QLm� D .n � m/ QLnCm C c

12
.n3 � n2/ ınCm;0 ;

(7.2.1)

where c is the central charge of the CFT2. fL0;L�1;L1g generate a SL.2;R/ algebra
which is the global conformal algebra in d D 2.

The ground state j0i is defined to be state annihilated by the lowering generators
(positively moded Ln) along with L�1 and L0 to preserve the global conformal
symmetry;

Ln j0i D QLn j0i D 0 ; .n � �1/ : (7.2.2)

A primary state j h; Nhi, which is the highest weight state of each irreducible
representation of the Virasoro algebra, is defined by the condition

Ln jh; Nhi D QLn jh; Nhi D 0 .n > 0/ ;

L0 jh; Nhi D h jh; Nhi; QL0 jh; Nhi D Nh jh; Nhi:
(7.2.3)

We shall focus on the left-moving sector and consider states which are obtained
by acting with the Virasoro generators on a primary state jhiL,

Y

i

.Li/
ki jhiL D � � � .L�n/

kn.L�.n�1//kn�1 � � � .L�1/k1 jhiL : (7.2.4)
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These states are usually referred to as the descendants of j hiL. Let us choose
an orthonormal basis j k; hiL such that Lh k; h jk0; h iL D ık;k0 , where k D
.k1; k2; � � � / is an infinite-dimensional vector with components that are all non-
negative integers. In particular, we want to define such a basis by starting from
the states of the form (7.2.4) and improve them into an orthonormal basis by taking
linear combinations of states with the same level (i.e., eigenvalue of L0). Since the
matrix defined by the inner products of all states of the form (7.2.4), the so-called
Gram matrix, is real-valued, the states j k; hiL are given by linear combinations of
states (7.2.4) with real coefficients.

Next we consider an infinite-dimensional representation Cn of the Virasoro
algebra acting on jk; hiL as follows:

Ln jk; hiL D
X

k0

Ck;k0

n jk0; hiL : (7.2.5)

The components Ck;k0

n are all real, since the vectors j k; hiL are real-valued. Also it
is important to notice the relation:

Ck;k0

n D Ck0;k�n ; (7.2.6)

which follows from the relation Lh k; h j Ln j k0; hiL D Lh k0; h j L�n j k; hiL. We
can analogously define the right-moving states jk; hiR by repeating the construction
accordingly.

Consider placing the CFT2 on a cylinder described by the coordinate .; x/, where
 is the Euclidean time coordinate and x is the space coordinate with the periodicity
2� . We can now construct the boundary state jBi as follows. Define a quantum
state at  D 0 by a Euclidean path-integral evolution confined to the time period
�ˇ

4
<  < 0. At time  D �ˇ

4
, we assume that there is a spacelike boundary

extending for all values of x 2 Œ0; 2��. Finally, we take the limit ˇ ! 0. The state
defined in this way is a boundary state jBi and it clearly depends on the choice
of the boundary conditions imposed. We are especially interested in the boundary
conditions which preserve a half of the original Virasoro symmetries. CFTs with
such boundary states are called boundary conformal field theories (BCFTs).

The boundary states which respect the boundary conformal invariance in the
aforementioned sense are required to satisfy

.Ln � QL�n/ jBi D 0 : (7.2.7)

We can find a simple solution to this condition by picking the Ishibashi state j Ihi
corresponding to the primary state j hi [142]. This is defined in terms of the states
constructed above to be:

j Ihi �
X

k

jk; hiL˝ jk; hiR: (7.2.8)
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We can prove the property (7.2.7) using (7.2.6) as follows:

X

k

Ln jk; hiL˝ jk; hiR D
X

k;k0

Ck;k0

n jk0; hiL˝ jk; hiR

D
X

k;k0

jk0; hiL ˝ Ck0;k�n jk; hiR

D
X

k0

jk0; hiL ˝ QL�n jk0; hiR

(7.2.9)

From the definition in Eq. (7.2.8), it is obvious that Ishibashi states are maximally
entangled states of the left and right-moving sectors of the CFT.

The boundary states which correspond to physical boundary conditions are not
the Ishibashi states, but rather the so-called Cardy states [143] denoted by jC˛i. The
Cardy states satisfy an additional consistency condition, Cardy’s condition, which
requires them to respect open-closed duality for partition functions on cylinders.
That is, the partition function of the theory should evaluate to the same value in
both the open and the closed string channel. The open string channel is one where
we take the state and evolve periodically in the Euclidean time. The closed string
channel reverses the time and space and considers evolving the state forward from
x D 0 to x D 2� . In general, the Cardy states (labeled by the index ˛) are given by
special linear combinations of Ishibashi states:

jC˛i D
X

h

B˛;h j Ihi ; (7.2.10)

where h runs over all primaries of the CFT2. In particular, the Cardy state contains
the information about the spectrum of the CFT in question.

Boundary states are singular as their norms diverge and thus we need to introduce
a regularization for practical computations. A simple way to regularize the norms
is to perform a Euclidean time evolution by e� 1

4 ˇH as in (7.1.2), where H D L0 C
QL0 � c

12
. Then the Ishibashi states look like

1p
Z.�/

X

k

e� 1
4 ˇ E.k/ jk; hiL˝ jk; hiR : (7.2.11)

Here E.k/ is defined as the eigenvalue of H and we also defined the partition
function Z.�/ D P

k e
� 1
2 ˇ E.k/. If we decompose the energy into the left and right-

moving parts as E.k/ D EL.k/CER.k/, then we find EL.k/ D ER.k/, as the state is
left-right symmetric. By tracing out the right-moving part, we find that the reduced
density matrix for the left-movers takes the simple Gibbs form

�L.h; �/ D 1

Z.�/

X

k

e�ˇEL.k/ jk; hiLhk; hjL: (7.2.12)
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Thus as presaged, we find that the left-movers are in a thermal distribution at
temperature T D 1=ˇ. Therefore the entanglement entropy between the left and
right-moving sectors essentially coincides with the thermal entropy Sth.h; �/ of
either sector. We refer the reader to [144, 145, 146] for more details in the context
of free field theories.

7.3 Time Evolution of Entanglement Entropy

Now let us turn to the computation of entanglement entropy when we divide the
total system into two parts A and Ac after a global quantum quench in a CFT2. We
will employ the replica method described in Sect. 2.2 and the initial state is taken to
be the boundary state (7.1.2) at t D 0. We represent this state by a path-integral over
a strip with the width 1

4
ˇ. If we are interested in the time evolution after the quench,

we need to analytically continue the width 1
4
ˇ to 1

4
ˇC it. In this way, we learn that

the reduced density matrix �A.t/ at time t is given by a path-integral over the strip:
0 	  	 ˇ

2
with a cut along the subsystem A, which is an interval of length ` (see

Fig. 7.1) given by

A W �`
2

	 x 	 `

2
 D 1

4
ˇ C i t ; (7.3.1)

where .; x/ is the coordinate on our two-dimensional Euclidean spacetime and we
assume x is non-compact.

It is useful to work with complex coordinates defined via .w; Nw/ D .xCi; x�i/.
The endpoints of the subsystem are given by (note that we are making an analytic
continuation of )

w1 D �`
2

C i

�
1

4
ˇ C it

�
; Nw1 D �`

2
� i

�
1

4
ˇ C it

�
;

w2 D `

2
C i

�
1

4
ˇ C it

�
; Nw2 D `

2
� i

�
1

4
ˇ C it

�
:

(7.3.2)

0

β
2

w1

A
w2

τ

x

β
4 + it

w

z1

A

z2
z

w = β
2π log z

Fig. 7.1 The conformal map for the calculation of evolution of entanglement entropy under
quantum quenches. The path-integral over the above regions provides the reduced density
matrix �A
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In this setup, the replica method leads to the following expression in terms of a two
point function on the strip:

Tr .�A.t/
q/ D h Tq.w1; Nw1/ NTq.w2; Nw2/ iw; (7.3.3)

where Tq and NTq are twist operators. From our previous arguments in Chap. 3, we
already know that the conformal dimensions of these twist operators are h D Nh D
c
24
.q � 1

q /.
To evaluate this two-point function, it is useful to perform the following

conformal map from the w plane to the upper half-plane parameterized by a
coordinate z, via

w D ˇ

2�
log z: (7.3.4)

After this map, the boundaries of the strip  D 0 and  D 1
2
ˇ are mapped to the

real axis =.z/ D 0 of the z plane. We also immediately find the endpoints (7.3.2) of
A are mapped to

z1 D i e� �
ˇ .`C2 t/ D 1

Nz2 z2 D i e
�
ˇ .`�2 t/ D 1

Nz1 : (7.3.5)

Therefore computing the Rényi entropy only involves determining the two-point
function on the upper half plane. This is as non-trivial as computing the four-point
function on a plane, using the method of images (we reflect the operators across the
real axis). Nevertheless, we can simplify the analysis by working in the limit t 
 ˇ

and ` 
 ˇ, which corresponds to a very rapid change in the Hamiltonian as we
originally assumed for the quench. In this case, we can approximate the two-point
function as if we were working with free fields. In particular, we can employ Wick
contractions of propagators [131]. This leads to the following result:

h Tq.z1; Nz1/ NTq.z2; Nz2/ iz '
0

@
cosh

�
� `C2� t

ˇ

�
cosh

�
� `�2� t

ˇ

�

4 sinh2
�
� `
ˇ

�
cosh2

�
2� t
ˇ

�

1

A

c
12 .q� 1

q /

: (7.3.6)

Then the two-point function on the w plane is given by the conformal transformation
from that on the z plane

hTq.w1; Nw1/ NTq.w2; Nw2/iw D
ˇ̌
ˇ̌ dz1
dw1

ˇ̌
ˇ̌

c
12 .q� 1

q /
ˇ̌
ˇ̌ dz2
dw2

ˇ̌
ˇ̌

c
12 .q� 1

q /

h Tq.z1; Nz1/ NTq.z2; Nz2/ iz

D
�
2�

ˇ

� c
6 .q� 1

q /

h Tq.z1; Nz1/ NTq.z2; Nz2/ iz: (7.3.7)
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Processing this expression, we finally obtain the time evolution of entanglement
entropy SA.t/ to be

SA.t/ ' c

3
log

ˇ

�
C	SA.t/ ; (7.3.8)

where we introduced the dependence of the UV cut off �. 	SA.t/ is the finite
contribution to the entanglement entropy which is given as follows [131]:

	SA.t/ '
(

2� c
3 ˇ

t ; 0 < t < `
2
;

� c
3ˇ
` ; t � `

2
:

(7.3.9)

We can understand the behavior (7.3.9) intuitively by the following quasiparticle
picture. At t D 0, the whole system is homogeneously excited by the quench. We
can imagine that at each spatial point entangled pairs are created as a result. By time
t, each entangled pair gets separated by t due to the relativistic propagation of fields
in CFT2. The entangled pairs can be thought of as right and left movers which move
outward from their point of origin ballistically.

For an entangled pair to contribute to SA, we know that the causality argument
described in Sect. 2.2 requires that the point of origin must lie in the causal past of
@A. Thus for the time-period 0 < t < `

2
, only the entangled pairs created near the

endpoints of A at t D 0 can contribute to the entanglement between A and Ac. The
size of the causal domain grows linearly in time, explaining the first line of (7.3.9).
At later times t > `

2
, the entangled pairs are either both in A or both in Ac; such

quasiparticles do not contribute to SA.
One can also see that for t > `

2
, the subregion entanglement SA saturates to

the thermal entropy at temperature T D 1=ˇ; this is a good diagnostic of the local
thermalization phenomena in this model. Strictly speaking though, the result derived
herein applies in any two-dimensional CFT, and for theories with low values of
central charge c < 1 (more generally rational CFTs), we do not expect complete
thermalization. It is therefore apposite to think of this result as originating from a
pre-thermalization mechanism. There is however a good diagnostic for the onset of
thermalization in systems that are truly ergodic like the holographic CFTs in the
mutual information [147]. In light of this, we do expect, as indicated at the outset,
that for such theories in the large central charge limit, a global quench corresponds
to black hole formation.

It is also intriguing to note an implication of the first term in (7.3.8). This term
owes its origins to the familiar UV logarithmic divergence as in (3.1.6). Consider
taking the regulating parameter ˇ to be small. If we set the regulator ˇ to be of the
same order as the UV cut-off �, then the logarithmic divergence disappears. This
means that the real space entanglement entropy SA for the boundary state is finite.
It can even be vanishing in special cases, as confirmed in explicit examples in [146].
An equivalent way to understand this is to consider an RG flow induced by a relevant
operator which leads to the trivial IR theory with all degrees of freedom gapped out.
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In such a situation, we can regard the IR state to be a boundary state (Cardy state)—
the boundary condition is expected to preserve the conformal invariance. Since
it is the ground state of the trivial IR theory, the real space entanglement should
essentially be vanishing [146]. In other words, a Cardy state can be regarded as the
trivial direct product state ˝x j 0xi—at each point in a (UV-regulated) discretized
theory, the state is the vacuum state and we simply tensor product this over the
spatial points.

7.4 Eternal Black Holes and Quantum Entanglement

Having discussed global quenches in field theory, we now would like to explore
the dynamics of quantum quenches in holographic models. Before we dive into
holographic models of quenches, it is helpful to first build some intuition for what
the geometric structure of a black hole spacetime implies for entanglement entropy.
It will suffice for us to describe thermal states of the CFT which are captured by the
Schwarzschild-AdS black holes.

Let us start by recalling the metric of the planar Schwarzschild-AdSdC1 black
hole (4.2.9) which we reproduce here for convenience,

ds2 D `2AdS

z2

�
�f .z/ dt2 C dx2d�1 C dz2

f .z/

�
; f .z/ D 1 � zd

zdC
: (7.4.1)

One can read from the solution the black hole temperature

T D 1

ˇ
D d

4�

1

zC
: (7.4.2)

This may be computed directly by defining the surface gravity � of the black hole
which is related to the temperature via T D �

2�
or more simply by examining the

Euclidean section of the solution.
To do the latter, first note that Schwarzschild-AdSdC1 solution has a timelike

Killing field @
@t . This allows us to write down the Euclidean black hole geometry by

simply analytically continuing tE D i t, so that the metric is

ds2E D `2AdS

z2

�
f .z/ dt2E C dx2d�1 C dz2

f .z/

�
(7.4.3)

Geometrically this solution looks like a cigar, since the Euclidean time coordinate
is angular tE 2 Œ0; ˇ�. The proper size of this circle in the metric is (7.4.3)

ˇ `AdS

p
f .z/
z . To make contact with the field theory construction, we strip off the

leading conformal factor and view the circle as having proper size ˇ `AdS

p
f .z/

which decreases monotonically from ˇ`AdS at z D 0 to 0 at z D zC. The geometry
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near z D zC, is locally like the origin in R
2. In fact, by examining the solution near

z ' zC we can extract the black hole temperature. Taylor expanding the metric near

the vanishing locus of f .z/, setting z D zC C f 0.zC/
4

z� we have

ds2 � `2AdS

z2C

�
f 0.zC/2

4
z2� dt

2
E C dz2� C dx2d�1

�
C � � � (7.4.4)

in which we are eliding over higher order terms. Regularity of the solution at z� D 0

requires that tE have a period

tE ' tE C 4�

f 0.zC/
H) ˇ D 4�

d
zC ; (7.4.5)

as stated earlier in (7.4.2).
An AdSdC1 black hole is thus dual to a finite temperature CFT state. The CFT

temperature T is the same as that of the black hole; the thermal scale sets the
periodicity of the Euclidean time circle in the field theory to be ˇ D 1=T and
simultaneously determines the asymptotic boundary conditions of the geometry.

There is a useful way to view the eternal AdSd black hole which is interesting
from the entanglement perspective [149]. The Lorentzian section of the black hole
solution admits a maximally analytic continuation beyond the coordinate patch
used to express the metric (7.4.1). The coordinates ft; z; xd�1g are valid only in
the exterior of the black hole, z > zC, and have a coordinate singularity at
the horizon. We can extend the spacetime beyond this by switching to regular
coordinates following the Kruskal construction (see e.g. [32]). It is simplest to
express the resulting geometry in the form of a Penrose diagram which conformally
compactifies the spacetime, bringing the asymptopia to finite distance. It also has
the virtue of keeping the light-rays oriented at 45ı as in Minkowski spacetime. This
then makes it easy to understand the causal structure: points connected by curves
which lie below the light-rays are timelike related, while those above are spacelike
related.

The Penrose diagram for the Schwarzschild-AdSdC1 solution is plotted in
Fig. 7.2. The coordinates used to express the metric (7.4.1) only covers the region
I. There is a second asymptotic region III attained by passing through the black
hole. We can associate a CFT to each of the two asymptotic boundaries; we have
indicated as such in Fig. 7.2 and referred to the two theories as CFTR and CFTL,
respectively.

Initially we had intended to interpret the CFT state dual to the black hole as a
thermal Gibbs density matrix. Let us see how this arises from the above picture. In
the two-sided black hole, the two CFTs on the left and right boundaries are causally
disconnected. We can therefore take the Hilbert space to be the tensor product space
HR ˝ HL. Let the energy eigenbasis in the two Hilbert spaces be spanned by the
states j rki and j lki, respectively with energy Ek. In this doubled Hilbert space,
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Fig. 7.2 The Penrose diagram of the eternal Schwarzschild-AdSdC1 black hole. We have drawn
an actual plot with the asymptotic boundaries kept timelike and straight; the reason for the
singularities being bent is explained in [148]. The metric (7.4.1) covers the region I, which is
the domain of outer communication of the black hole. The maximally extended spacetime includes
the rest of the regions II, III, and IV as shown. Region I may be viewed as the analog of the Rindler
wedge of Minkowski spacetime. We also indicate lines of constant Lorentzian time t (light blue)
and spatial coordinate z (light orange) in regions I and III, respectively. Time runs forward in
region I and backward in region III

consider the following state:

jTFDiˇ D 1
p
Z.ˇ/

X

k

e� 1
2 ˇ Ek jrki ˝ j lki ; Z.ˇ/ D

X

k

e�ˇ Ek : (7.4.6)

This state is usually referred to as the Hartle-Hawking or thermofield double state. It
is a pure, but non-trivially entangled state in HR ˝HL. Furthermore, it has vanishing
energy with respect to the thermofield evolution operator,

HTFD D HR ˝ IL � IR ˝ HL : (7.4.7)

Under Hamiltonian time evolution of the state (7.4.6) is thus invariant, for the
relative sign cancels the phases acquired:

jTFD.t/iˇ D eiHTFD t D ei.HR˝IL�IR˝HL/t jTFDiˇ DjTFDiˇ : (7.4.8)

Consequently, it is static under time-evolution which runs upwards on region I but
runs down in region III. It is perhaps worth emphasizing that the solution (7.4.1) is
not global static, since inside the horizon in the black hole (region II) and the white
hole (region IV), the geometry is like a time-evolving cosmology (time and space
swap roles in these regions).
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While the state is pure in the doubled Hilbert space, it is non-trivially entangled.
Should we trace out one of the two components, then the other one will inherit the
thermal Gibbs density matrix by construction, for:

�R D TrL
� jTFDiˇ ˇhTFD j� D 1

Z.ˇ/

X

k

e�ˇ Ek jrkih rk j ;

�L D TrR
� jTFDiˇ ˇhTFD j� D 1

Z.ˇ/

X

k

e�ˇ Ek j lkih lk j :
(7.4.9)

In this manner, we see that the pure entangled thermofield state in the doubled CFT
is equivalent to the standard presentation of the thermal density matrix in a single
CFT.

Given �R (or �L), it is a simple matter to compute the von Neumann entropy.
The thermal nature of (7.4.9) implies that the entanglement entropy will be equal
to the thermal entropy. Since the latter is computed by the black hole entropy
holographically, we will find

SR D SL D Sbh D 1

4G.dC1/
N

�
`AdS

zC

�d�1
Vol.d�1/ ;

D 4� ceff

�
4�

d

�d�1
Td�1 Vol.d�1/ ;

(7.4.10)

in which Vol.d�1/ is the regulated volume of the spatial geometry R
d�1. This is an

interesting scenario in which black hole entropy can be interpreted as entanglement
entropy, albeit not for the gravitational system, but rather holographically for the
two boundary components making up the thermofield double construction.

We have given above a real-time construction of the thermofield double state.
This state can also be obtained directly from a Euclidean path integral as should
be familiar from statistical mechanics. It is instructive to examine the geometric
analog of this construction, relating as it does to the Euclidean black holes solution.
To construct the thermofield double state (7.4.6) in a QFT, we start with the
Euclidean path integral on R

d�1 � S1ˇ . More generally, if we wish to consider
stationary Euclidean configurations on a curved space†d�1 with a spatially varying
temperature, we should just consider placing our QFTd on a Riemanninan manifold
Bd which is a fibration of the thermal circle S1ˇ over †d�1. This Euclidean path
integral constructs the partition function Z.ˇ/. Let us express the latter as the norm
of a state, i.e., write

Z.ˇ/ D ˇh eTFD j eTFD iˇ; (7.4.11)

where j eTFDiˇ is defined by (7.4.6) with the factor Z.ˇ/�1 removed. We can now
slice this Euclidean path integral in half and extract the thermofield double state
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Fig. 7.3 The Euclidean
construction of the
thermofield double state
jTFDiˇ . The green curve
represents the
limiting/attractor extremal
surface E?, (7.5.14) relevant
to the holographic
entanglement entropy for
regions anchored on both
boundaries

tE = −β
2 tE = 0

CFTRCFTL

β
2 tE

t

•••••••••••••••••••••••••••••••••••••

j eTFDiˇ. This is easily done, for the Euclidean evolution runs over tE 2 Œ0; ˇ�

owing to the thermal boundary conditions. We can restrict the domain of Euclidean
evolution from �ˇ

4
	 tE 	 ˇ

4
and slice the path integral half-way around the circle.

By construction, this would give us

X

k

�
e� 1

4 ˇEk jrki
�

˝
�
e� 1

4 ˇEk j lki
�

(7.4.12)

Having obtained the state, we can then proceed to evolve it in real time t by the
thermofield double Hamiltonian (7.4.7).

Let us interpret this construction in the holographic setting. Start with the
Euclidean Schwarzschild-AdSdC1 solution (7.4.3) which computes Z.ˇ/. To obtain
j TFDiˇ, we retain the part of the geometry given by �ˇ

2
	 tE 	 0 by shifting the

contour a quarter thermal period. Evolving this forward in real-time is tantamount
to gluing onto this solution the future half of the real-time geometry as illustrated in
Fig. 7.3. We will note that, by construction, CFTR and CFTL can be viewed as living
at tE D 0 and tE D �ˇ

2
, respectively.

7.5 Holographic Quantum Quenches

As we briefly explained, the holographic dual of quantum quench scenario corre-
sponds to the process of black hole creation. In general the dynamical solution to
Einstein’s equations which describes the gravitational collapse of matter to form a
black hole is complicated and has to be determined numerically. If we are however
interested in understanding the qualitative features of such solutions, then it suffices
to be agnostic about the matter that collapses and model the black hole formation
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Tvv ↖

H+ H+

T vv

↗

Fig. 7.4 The Penrose diagram for a collapsing null shell of matter which forms a black hole. We
also plot the corresponding picture in the standard collapse scenario

using the collapse of null dust (Fig. 7.4). This is well described by the Vaidya-
AdSdC1 solution, which is the simplest analytic metric for the dynamical process
of black hole formation. We will first describe this toy model and then explain how
to construct the holographic dual of the boundary state quench (7.1.2).

7.5.1 Vaidya-AdS and Global Quench

The Vaidya-AdSdC1 solution is best described in ingoing coordinates which are
regular across the future event horizon of the black hole:

ds2 D `2AdS

z2
�� �1 � m.v/ zd

�
dv2 C 2 dv dz C dx2d�1


; (7.5.1)

where m.v/ gives the mass of the black hole at time v. The planar Schwarzschild-
AdSdC1 black hole (7.4.1) may itself be written in the ingoing (Eddington-
Finkelstein) coordinate system by making the coordinate transformation v D t CR

dz
f .z/ . In particular, the coordinates t and v coincide at the boundary of the spacetime

z D 0. The coordinate z now parameterizes ingoing null geodesics in the spacetime.
The geometry (7.5.1) is supported by matter with Tmatter

vv / m0.v/. We record
that in order for the matter to satisfy the null energy condition which requires
Tmatter
AB �A �B � 0 for any null vector �A in the spacetime, we need the mass function

m.v/ to be monotone increasing, viz., m0.v/ � 0. Moreover, if we assume m.v/ is a
constant, the above metric coincides with that of the planar Schwarzschild-AdSdC1
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black hole (7.4.1). In particular, a quantum quench corresponds to the choice

m.v/ D m0 ‚.v/ D
(

m0 ; v � 0

0 ; v < 0
(7.5.2)

The mass parameter suddenly changes at v D 0. The metric near the AdS
boundary also gets abruptly modified. This can be attributed to a sudden injection of
energy density into our boundary theory. The expectation value of boundary energy
momentum tensor instantaneously switches from its vacuum value to the thermal
answer

h T�� i dx�dx� D
(

ceff
�
4� T
d

�d �
.d � 1/ dv2 C dx2d�1

�
; v � 0

0 ; v < 0
(7.5.3)

However, other observables take longer to equilibrate; one can see a slower
equilibration in correlation functions, and also in entanglement entropy. The first
analysis of entanglement entropy in such a gravitational collapse was carried out in
[11], to primarily illustrate the efficacy of the holographic proposals for studying
entanglement dynamics. The quench was modeled by the Vaidya-AdS3 geometry
with

m.v/ D m0 C 1

2
tanh

v

vs
C m0 � 1

2
; d D 2 (7.5.4)

It was demonstrated that the entanglement entropy grows slowly from its pre-quench
value to the final thermal value (see Fig. 7.5). In particular,	SA grows from its value
prior to the quench, via a linear regime, onto a saturation regime where SA saturates
to the thermal answer. See Fig. 7.5. This behaviour is consistent with the field theory
expectation (7.3.9). One can get a reasonably good qualitative understanding of the
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Fig. 7.5 Typical behaviour of time evolution of entanglement entropy 	SA.t/ following a
quantum quench. The result has been obtained for the Vaidya-AdS3 spacetime with temporal
profile given in (7.5.4). From the plot, we see three characteristic regimes: a switching-on regime
at early times, an intermediate linear growth regime, and finally, a saturation regime
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result by working in the quasi-adiabatic regime. In the case, we can compute the
entanglement entropy at time t D v working with the instantaneous black hole, viz.,

compute SA at a temperature T.v/ D
p
m.v/
2�

, which grows from 0 to
p
m0
2�

While this
works for v � 1, we can also get analytic results in the quench limit (7.5.2) (vs !
1). We glue the geodesics in AdS3 before the shell to those in the BTZ geometry
after the shell, taking into account the refraction through the shell. The behaviour of
entanglement entropy is however qualitatively similar to what is described above.

We will have more to say about the entanglement growth and the rates thereof
in the sequel. For now we simply note that in recent years there has been much
activity in probing the dynamics of entanglement entropy in such examples. In
particular, [150] explored the Vaidya-AdS model of the quench extensively. They
noted the linear growth of entanglement entropy out and the fact that extremal
surfaces penetrate apparent horizons. Higher dimensional quenches were similarly
analyzed in [151, 152]. A comprehensive analysis of the spacetime regions probed
in a global Vaidya-AdS geometry was undertaken in [153], in which various curious
features of entanglement growth in finite systems were also noted.

7.5.2 Holographic Boundary States

While the Vaidya-AdS solution affords some insight into the general behaviour of
the quench as a holographic toy model, we can also explicitly realize the holographic
dual of the global quench, using the boundary state approximation, (7.1.2) following
[141]. One advantage of this approach is that we can get analytical results for
the holographic entanglement entropy, while determination of the HRT surfaces in
general requires resorting to numerics.

Forward Evolution in the Thermofield Double

As a preparation for this calculation, let us first compute the holographic entangle-
ment entropy for the thermofield double state (7.4.6). If we consider a subregion in
either CFTR or CFTL, we don’t gain new insight compared to our computations in
Sect. 6.1. We can however extract non-trivial information by picking our subregion
A to straddle both Hilbert spaces. We take therefore A D AL [ AR where both
AL,R are some spatial domains on the right and left CFTs. For simplicity, we shall
consider the situation in which AL,R are both half-spaces:

A D AR [ AL ; AL,R.t/ D ftL D tR D t; x1 > 0 ; xd�2 2 Œ�L;L�d�2g
(7.5.5)

In an important distinction from our analysis in Sect. 7.4, we will not evolve
the state jTFDiˇ with the thermofield Hamiltonian. As noted earlier, this does not
lead to any non-trivial evolution, as the state has zero energy under HTFD. We will
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instead evolve this state forward in time from t D 0 on both the left and right, with
the Hamiltonian:

HLR" D HR ˝ IL C IR ˝ HL (7.5.6)

Under this Hamiltonian, the state jTFDiˇ evolves into

jTFD.t/iLR" D e�i .HRCHL/t jTFDiˇ D 1

Z.ˇ/

X

k

e� 1
2 Ek.ˇ�4 i t/ jrki ˝ j lki ;

(7.5.7)

This clearly corresponds to a quench; we prepare via Euclidean evolution a zero
energy state jTFDiˇ of HTFD, but then evolve it with a new Hamiltonian HLR".

We can now compute the holographic entanglement entropy for this state at
various times t D tR D tL, by considering extremal surfaces anchored on
x1 D 0 on both boundaries. This computation can be performed analytically in
the geometry (7.4.1). We will simplify the discussion by choosing zC D d

2
so

that T D 1
2�

. By a coordinate transformation �.z/, we can express the solution
equivalently as

ds2 D �g2.�/ dt2 C d�2 C h2.�/ dx2 ;

h.�/ D 2

d

�
cosh

d �

2

� 2
d

; g.�/ D h.�/ tanh
d �

2
:

(7.5.8)

The extremal surface EA in this geometry anchored on A given in (7.5.5)
should by symmetry stay put at x1 D 0. It is furthermore extended along the
translationally invariant directions xd�2. So the only information about its profile
is contained in a single function �.t/. Writing down the area functional action for
this parameterization, we can find �.t/. We extermize

S D Ld�2
Z

dt h.�/d�2 p P�2 � g2.�/ : (7.5.9)

The first observation to make is that in order for EA to satisfy the boundary
conditions, it must pass through the event horizon of the spacetime. Extremal
surfaces in time-dependent backgrounds do probe the region behind event and
apparent horizons as discussed originally in [154] and elaborated upon in the context
of entanglement entropy in [150]. This is unlike the static geometries described in
Sect. 6.1 in which the horizons form a barrier for extremal surfaces anchored on a
single boundary [108]. A comprehensive analysis of the regions in the collapsing
Vaidya-AdSdC1 geometry that can be probed by extremal surfaces can be found in
[153].
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In the present case, by choosing to use the Hamiltonian (7.5.6), we have broken
the time translational symmetry of the Schwarzschild-AdS solution. The extremal
surfaces of interest now necessarily have to pass through the horizon and transit
through region II of the black hole in their passage from the asymptopia in region I
to that in region III [141].

While we can introduce different coordinates for the various regions of interest,
we can access region II behind the horizon from the right asymptotic region I, by
analytically continuing t and � to

t D tII � �

2
i ; � D i % ; (7.5.10)

in which tII and % are real valued spacelike and timelike coordinates.
The extremal surface can be found by writing down the equations of motion

following from (7.5.9). Since the action is time-independent, we have a conserved
quantity. Using it to integrate once we find an equation for EA:

a.�/
p�g.�/2 C P�2 D �i a� ; a.�/ � �i g.�/ h.�/d�2 ;

g� D g.i %�/ ; h� D h.i %�/ ; a� D �i g� hd�2� :

(7.5.11)

Here %� is the turning point of the trajectory where P� D 0, and to declutter formulae,
we also introduced a new function a.�/ as indicated. In writing the expressions we
have used, the intuition that this has to be in region II a.�/ will then be real in that
region. Integrating the above by quadratures, we find the profile of EA

t.�/ D ��
2
i �

Z �

i %�

d�0

g.�0/

�
1 � a.�0/2

a2�

�� 1
2

(7.5.12)

The contour of integration is chosen such that it avoids the pole at � D 0. Evaluating
the on-shell action, we find the area of EA, leading to

SA D 8� ceff L
d�2

Z 1

i%�

d� h.�/d�2
�
1 � a.�/2

a2�

�� 1
2

: (7.5.13)

As noted earlier, a.�/ is real valued in region II; say it attains a maximum at
� D i %m. One can check that

%m D 2

d
arctan

 r
d

d � 2

!
; (7.5.14)
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for the solution (7.5.8). This maximal locus is indicated as the green surface in
Fig. 7.3. Let us denote this critical attractor surface that lies behind the horizon as
E?.

For any finite time boundary region, the extremal surface EA lies below this
critical surface and limits to it, in the sense that the turning point %� ! %m, as the
boundary time gets large. Subtracting the entanglement entropy of the pre-quench
state, we then learn that

	SA ' 8� ceff L
d�2 a.i %m/ t t 
 1: (7.5.15)

Holographic Boundary State Quenches

We now return to our discussion of quantum quenches. It was argued in [141] that
the boundary state construction of the quantum quench (7.1.2) can be holographi-
cally recovered from the above discussion. The holographic dual of the boundary
state j Bi is obtained by slicing the geometry of the Schwarzschild-AdSdC1 black
hole across a vertical axis as depicted in Fig. 7.6. This also may be understood by
utilizing the extension of the holographic dictionary to study BCFTs which was
developed in [155].

The geometry constructed thus has two boundaries. One of them is an asymptotic
boundary, where the dual field theory CFT lives. The other one is an artificial
boundary condition which we employed to excise the left half of the spacetime as
shown in Fig. 7.6. We only retain the part of the dynamical bulk fields that respects
the boundary condition following from this identification. Viewing the identification
as a map F W HL 7! HR, we see that the state thus constructed can be interpreted
as a pure state in CFTR. The map in question is a Z2 projection on the thermofield
double state (7.4.6) that amounts to retaining the left-moving modes of CFTR and
the right-moving modes of CFTL. We thus identify the dual of the quotient geometry
as the dual of the boundary state jBi. Having performed these identifications in the

Fig. 7.6 The holographic
dual geometry to the quantum
quench. The boundary state
jBi is created and evolved for
an Euclidean time 1

4
ˇ. The

green curve represents the
limiting extremal surface E?
relevant to the holographic
entanglement entropy for
subregions anchored on the
CFT |B 〉

tE = 0

CFTR

tE

β

4

t
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Euclidean path integral, we evolve in Euclidean time tE by 1
4
ˇ and thence continue

the geometry to the Lorentzian signature. This precisely leads to the state (7.1.2) as
desired.

We can now compute the holographic entanglement entropy under a quantum
quench by employing the geometry described above. Let us choose the subsystem
A of the CFTR to be the half space x1 > 0. It is clear that the corresponding extremal
surface EA is given by a half of the surface EAR[AL . Thus, we can immediately read
off the growth of entanglement SA.t/ from our earlier expression to find:

	SA.t/ ' 4� ceff L
d�2 a.i%m/ t ; for t 
 1 : (7.5.16)

The linear growth of the entanglement entropy above its vacuum value gives
an interesting measure of propagation velocity. To do so, let us normalize the
answer for 	SA by the asymptotic thermal entropy density of CFTR: sbh D
4� ceff h.0/d�1 D 4� ceff

�
2
d

�d�1
as expected from (7.4.10) at T D 1

2�
. We then

can define the tsunami velocity following [141, 156]:

vE � 1

sbh Ld�2

�
@

@t
	SA

�
D .�� 1/

1
2 .��1/

�
1
2 �

; � D 2.d � 1/

d
: (7.5.17)

We will explain the rationale for the terminology and the implication of this
computation in the sequel. For the present, simply note that the velocity vE takes
values within the interval . 1

2
; 1/ for d > 2.

So far we have focused on a simple choice of A being the half-space. This choice
is responsible for the continued growth of entanglement. It is instructive to compare
this to the case in which we take A to be a finite interval of width `. We consider
a strip-region which respects .d � 2/-dimensional translational invariance and let
x1 2 Œ� `

2
; `
2
�. We now encounter two distinct possibilities for the dual extremal

surfaces:

(i). A single connected extremal surface, that links the two ends of the interval
x1 D ˙ `

2
.

(ii). A pair of disconnected surfaces which start out from the two endpoints of @A,
viz., x1 D ˙ `

2
, but independently end on the internal boundary of the space.

The holographic entanglement entropy prescription requires us to pick the surface
that has the smaller area of the two. The connected surface of interest is the one
obtained earlier in Sect. 6.1 for the Schwarzschild-AdSdC1 geometry, since we only
retain the exterior part of the black hole (region I). The result for the disconnected
surface on the other hand is twice that given in (7.5.16). It turns out that for t �
`, the disconnected surface has smaller area, while in general around t � `, the
area of the connected surface becomes comparable and eventually takes over. This
has to be the case, since the area of the disconnected surface is dominated at late
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times by the attractor surface E?, whose area continues to grow linearly in time.2

While the cross-over between the two distinct extremal surfaces must in general
be obtained numerically, one can analytically show that, in d D 2, the field theory
expectation (7.3.9) is borne out precisely.

Purity Versus Thermalization

The quench scenarios are useful for diagnosing the distinction between a pure state
and a mixed state in AdS/CFT. The quench process results in black hole formation
as seen above. One might naively wonder if the final state resulting from the
evolution is well approximated by the eternal AdS black hole at late times. For
local correlation functions, this is indeed the correct picture. However, if this were
to be the case for all observables, we would run into a paradox. The von Neumann
entropy for the total state viewed as a black hole would be non-zero, owing to the
black hole entropy, and thus the evolution would seem to have converted a pure
initial state into a mixed state. This would clearly be problematic and indicative
of a troublesome contradiction between unitary evolution in the field theory and
the holographic map. Fortunately, there is a simple expedient which clarifies the
situation and makes clear why the homology constraint is an important feature in
the prescription.

Consider a careful evaluation of the holographic entanglement entropy keeping
track of both the region A and its complement Ac that we trace out. In the far past
before the quench, there is no black hole, and the state being pure, the bulk geometry
is that A and Ac share a common extremal surface EA. Thus as SA D SAc , the purity
of the state is verified. Our puzzle starts once the black hole forms; now there is a
horizon as in Figs. 7.4 and 7.6, but note that the second asymptotic region is no
longer present as in the case of the eternal black hole. This provides us with an
exit clause. A-priori one finds that the extremal surface EAc for the complementary
regionAc wraps around the black hole and picks up the thermal contribution leading
to our predicament. However, owing to the absence of the second asymptotic region,
in such cases, one can show that the extremal surface EA is homologous to Ac

despite the presence of the horizon. To see this, one can simply show that EAc may
be deformed to EA smoothly without obstruction. In practice, this can be done by
moving the surface far back into the past, before the collapse, to bring the surface
out from behind the horizon, whence the homology becomes manifest.

Therefore we can argue that the equality SA D SAc holds at all times, once
we factor in the global minimality condition subject to the homology constraint.
Thus we also see from the holographic viewpoint that the holographic state under
quantum quench is always pure [150, 140]. In particular, we can conclude that the

2This illustrates an important fact: while the overall spatial volume inside a black hole shrinks to
zero, areas of spatial sections actually continue to grow. This has been conjectured to be related to
the growth of complexity of the state [157].
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von-Neumann entropy for the total system is vanishing, which resolves our paradox.
It is crucial for this discussion that the homology surface be spacelike as described
in Sect. 4.3. Further elaboration of the role of homology in the holographic context
can be found in [102].

One may ask about the physical meaning of the entropy of the black hole horizon
that was created. The entanglement entropy for finite subsystems approaches the
result in a finite temperature CFT with the IR contribution dominated by the
black hole entropy. The latter can be interpreted as a coarse-grained entropy with
the reduced density matrix of the small subsystem being well approximated for
simple observables by the thermal density matrix. This is what we anticipated
based on the eigenstate thermalization picture. Insofar as correlation functions etc.,
are concerned, there is no way, without doing delicate measurement of a high-
point correlator, to distinguish between the thermal state and the one obtained by
the quench. Piecing apart the two configurations requires exponential precision,
owing to the dominance of the statistically typical states. However, entanglement
entropy is not a local observable and carries information about the wavefunction.
Thus, if one is able to access this fine-grained contribution for the geometry, we
can learn of the distinction between a pure and mixed state. It is rather curious
that in the semiclassical limit, despite entanglement entropy being computed by
areas of surfaces, the global nature is manifested through the non-trivial homology
constraint.

7.5.3 Entanglement Tsunami

Earlier in our discussion, we saw how the entanglement entropy behaves following a
quench. In particular, we noted that the growth of 	SA.t/ exhibits some interesting
features, in different temporal domains. This behaviour was analyzed in detail for
different quench scenarios and region shapes by Liu and Suh in [156, 158]. Based
on this exploration, they proposed a beautiful physical picture of entanglement
propagation in A in a manner reminiscent of wave propagation, which they
poetically dubbed the entanglement tsunami.

Let us say that we quench the quantum system at t D 0. This can be viewed
as dumping excess energy density into the system, which we will imagine gets
transferred into pairs of entangled quanta. The number of quanta produced will
roughly correspond to the energy density ". Note that we are not proposing to
view these quanta as some quasiparticle like excitations. This would not be a good
approximation in a strongly coupled QFT; the word quanta simply refers in this
context to some collective blob of stuff which is a proxy for how degrees of freedom
in A are entangled with those outside.

The idea is to analyze different temporal domains following the quench, assum-
ing that at late time the system thermalizes into a finite temperature state, say with
temperature Teq. This sets a length scale for us which we refer to as the equilibration
length scale ˇeq. We will assume that region A is macroscopic on these scales, for
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otherwise we will only be able to pick out some UV features of the entanglement
entropy. We denote the characteristic size of A, which can be of arbitrary shape,
to be `A and thus `A 
 ˇeq. The temporal domains we will describe can be
understood in terms of how the quanta produced by the quench are statistically
distributed. At early times, they will not be locally equilibrated, at intermediate
times, local equilibration would have been achieved, and at late times, the system
would be globally equilibrated.

• t 	 ˇeq: The quanta are yet to locally equilibrate. Locality of the quantum
dynamics makes clear that SA can only get contributions from near the entangling
surface owing to our causality argument. The only modes that can be entangled
are those produced in the vicinity of the entangling surface @A. Taking into
account their number, we can perform a little dimensional analysis to conclude
that SA should grow quadratically from its pre-quench value. This is indeed what
is found in explicit examples, and one has

	SA D �

d � 1
"Area.@A/ t2 C � � � (7.5.18)

• ˇeq � t � `A: Now the parts of the system are locally equilibrated but
not all of A has succeeded in doing so. In this regime, we expect that small
patches of the system are in local thermodynamic equilibrium. So we expect
that the entanglement entropy switches from the UV area law behaviour to the
IR volume law behaviour in a narrow ribbon around the entangling surface, viz.,
	SA / Td�1

eq Area.@A/. Again dimensional analysis fixes the growth to be linear.
Normalizing the result by the local equilibrium thermal entropy density seq, we
can write

	SA D vE seq Area.@A/ t C � � � (7.5.19)

There is only one unknown dimensionless number, which we parameterized to
the entanglement tsunami velocity vE. We can argue that it is independent of
the shape of A. To see this, view the region A as being inundated by quanta
streaming in from Ac across @A. For the intermediate times, we can roughly
view the quanta that contribute to the entanglement as having homogeneously
covered a ribbon of the region A around @A. This ribbon wides inward along a
wave-front led by the vanguard quanta that were produced at early times. This
‘tsunami’ wavefront propagates inwards linearly in time with a velocity vE.

• t 
 `A: When the wave has inundated A completely, there is no more
entanglement to be gained. The subsystem for all intents has thermalized and the
reduced density matrix is pretty much indistinguishable from the thermal density
matrix for degrees of freedom in A, viz., S.�Ajj�TeqA / D 0. This is the saturation
regime in which

SA D seq Vol.@A/ (7.5.20)
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The plot in Fig. 7.5 displays all these features. One can indeed check this
explicitly in the Vaidya-AdS models of the early time quadratic growth [159, 156].
The intermediate time linear growth regime is already exemplified in the boundary
state quench analysis, see [131]. It is also present in the quasi-adiabatic process
described by the thick-shell Vaidya geometry. The interesting quantity in this
domain is the tsunami velocity vE, which characterizes the speed with which the
entangled quanta propagate in the system. They enter at the entangling surface and
proceed to overwhelm and saturate region A.

It was noted in [156, 158] that there appears to be a universal upper bound on the
rate of growth of entanglement in holographic systems. We define this in terms of
the rate of growth of entanglement entropy suitably normalized

R.t/ � 1

seq Area.@A/
dSA
dt

(7.5.21)

Naively one expects based on causality that the rate is bounded by the speed of
light vE 	 1 (see, for example, [160, 161]), but this turns out to be a rather weak
bound. Liu and Suh argued for a stronger upper bound, based on the collapse that
forms a thermal Gibbs state which holographically is dual to the collapse to form a
Schwarzschild-AdSdC1 black hole. The latter has a velocity obtained earlier for the
boundary state quench (7.5.17), and so it was proposed that

R.t/ 	 v?E D .� � 1/ 12 .��1/
�
1
2 �

; � D 2.d � 1/
d

; (7.5.22)

in which we made explicit the dimension dependence. While v?E D 1 in d D 2, in
general, we can check that the tsunami velocity lies in between the speed of sound,
vs D 1p

d�1 in scale-invariant systems, and the causally acceptable value of unity.
It therefore suggests very strongly that the quanta responsible for entanglement

propagation are very different from those which help equilibrate the system. There
have been interesting attempts to come up with models of entanglement propagation
that capture features of the holographic theories [161]. What can be demonstrated
explicitly is that free streaming quasiparticles respect a much stronger bound:

vfree
E D �

�
d�1
2

�
p
� �

�
d
2

� : (7.5.23)

It is easy to see that

v?E > v
free
E > vs for d > 3 and v?E D vfree

E D vs D 1 ; d D 2

lim
d!1 v?E D 1

2
; lim

d!1 vfree
E ; lim

d!1 vs D 0 :
(7.5.24)
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Incorporating interactions into the free-streaming quasiparticle picture appears to
help; for instance, [161] describes a refinement that captures the correct behaviour
of mutual information in d D 2. There is thus far no model that captures all the
physical features of import seen in holographic systems in d > 2.

The saturation regime is preceded by a temporal domain where the system has
lost all memory of its origins. This is to be expected on physical grounds, since
the resulting near thermal density matrix can have arisen in many different ways.
Ergodicity is responsible for this memory loss. It is interesting to examine the rate
of approach to the late time thermal value; one finds that there is a characteristic
velocity again, dubbed the butterfly velocity, vB

vB D
r

2d

d � 1
: (7.5.25)

The name here refers to the speed at which quantum operators grow under chaotic
Hamiltonian dynamics. It appears not only in the temporal behaviour of SA.t/, but
also in the context of studying quantum chaos in holography [162]. One can trace
the specific value in both cases to the predominant effect played by the attractor
surface E? inside the black hole. It has been suggested that this velocity should be
viewed as the continuum analog of the Lieb-Robinson bound [163], which sets an
upper bound for propagation of quantum information in non-relativistic quantum
systems (with finite dimensional Hilbert space).



Chapter 8
Entanglement in Excited States

As we have seen in earlier chapters, we now have a good understanding of the
behavior of entanglement entropy for the ground state of a QFT, and in particular
in theories with conformal invariance. On the other hand, if we would like to gain
intuition for the dynamics of quantum field theories, we also need to know properties
of excited states, especially with regard to features of quantum entanglement. One
interesting class of excited states is obtained via a quantum quench. In the preceding
chapter, we have seen how entanglement entropy evolves dynamically following
a global quench, in homogeneous translationally invariant excited systems. We
will continue this discussion, relaxing the condition of spatial homogeneity, to
better access the behaviour of entanglement entropy in more general excited states,
including ones with localized excitations.

8.1 First Law of Entanglement Entropy

To build some intuition, let us first begin our analysis of entanglement entropy in
excited states by considering a simple setup. We wish to start with a QFT in its
ground state and excite it locally with a high energy excitation. Before directly
tackling the problem in field theory, let us ask what the picture from the holographic
analysis would tell us. We shall thence see that the result can be understood quite
straightforwardly in terms of relative entropy (2.5.1).

8.1.1 A Holographic First Law

We start with a CFT in a ground state and examine the generic behaviour of an
entanglement entropy in an excited state, following the analysis done in [164]. We
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know that the ground state of a holographic CFTd is dual to a pure AdSdC1spacetime
and excitations would correspond to asymptotically locally AdS geometries. Any
excitation, which we treat as a state in the field theory Hilbert space, will modify
the asymptotic geometry. By the scale/radius duality, a high energy excitation will
modify the geometry near the boundary of AdS (at small z in the Poincaré chart),
while a low energy one will affect the geometry at larger values as well (close to
the Poincaré horizon or the center of Ads). By virtue of the extremal surfaces being
sensitive to the deformation in the geometry, it is clear that the entanglement entropy
will provide us with a good diagnostic.

As explained in Sect. 6.1, any asymptotically locally AdSdC1 metric can be
written in a near-boundary expansion in the Fefferman-Graham coordinates (6.1.2).
While we will eventually want to relinquish spatial homogeneity, let us for
simplicity start with excited states which preserve spatial translations and rotations,
and also time translations. This means that we have sufficient symmetry to write
the metric of the dual excited state in terms of two unknown functions, after gauge
fixing the radial coordinate to measure the proper size of the spatial sections, viz.,

ds2 D `2AdS

z2
��f .z/ dt2 C g.z/ dz2 C dx2d�1


: (8.1.1)

f .z/ and g.z/ are non-negative functions whose profile depends on the details of
excitations. Fixing the boundary metric h�� D ��� and also setting all the matter
contributions to zero, we find the near-boundary geometry for an excited state to be
given by

g.z/ ' 1

f .z/
' 1C m zd C O.zdC1/ ; (8.1.2)

wherem sets the energy density of the excitation. Computing the holographic energy
stress tensor [101, 99], we find, using (4.2.2),

T��dx
� dx� D ceff m

�
.d � 1/ dt2 C dx2d�1

�
: (8.1.3)

The astute reader will recognize that this behaviour is the same as that for the
Schwarzschild-AdSdC1 black hole (7.5.3). This should be surprising—we only
captured the asymptotic geometry and are therefore sensitive only to the coarse
features of the state. For instance, we cannot distinguish from the above information
whether our solution is a black hole or some star-like configuration in the interior of
the spacetime.

Nevertheless, this information about the geometry suffices if we want to extract
universal properties that depend only on the UV data of the theory. While the
energy-momentum tensor (8.1.3) provides one such, we find another probe in the
entanglement entropy for a small subsystem. Recall from Sect. 6.1 that in pure
AdSdC1, the minimal surface of a region of size `A probes the bulk region within
0 < z < `A. We can therefore speculate from (8.1.2) that for a subsystem A of size
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bounded by

m `dA � 1 H) h T�� i ; `dC1
A � ceff (8.1.4)

the minimal surface will be free from the details of the IR region and only depend
on the parameter m. As rephrased above, we require that the energy density be much
smaller than the characteristic energy scale of subsystem A.

Let us focus on spherical ball-shaped regions A as (6.1.21) with `A D R. The
minimal surface is determined from the action:

S D4�ceff !d�2
Z

dz

zd�1 �.z/
d�2pg.z/C � 0.z/2 ; (8.1.5)

Carrying out the analysis, we find that �.z/ is modified away from (6.1.23). To first
order in m:

�.z/ D
q
R2m � z2 C m

2RdC2
m � zd .R2m C z2/

2 .d C 1/
p
R2m � z2

; R D Rm

�
1C mRd

m

d C 1

�
:

(8.1.6)
We imposed regularity at the turning point z D Rm of EA to be deformed, and
imposed regularity there to fix its value. Thence we compute from the area of EA:

SA D 4� ceff !d�2
Z Rm

�

dz
Rm

zd�1 .R
2
m � z2/

d�3
2 .1C K.z// ;

K.z/ D 2 .d � 2/RdC2
m � 2Rd

m z
2 C .3C d/R2m zd � 3 .d � 1/ zdC2

2 .d C 1/ .R2m � z2/
:

(8.1.7)

We finally infer the change in the holographic entanglement entropy to first order in
m to be

	SA D 2�

d C 1
ceff !d�2mRd: (8.1.8)

Comparing this with the energy contained in region 	EA D R
A dd�1x h Ttt i,

using (8.1.3), we find:

	SA
	EA

D 2�

d C 1
R (8.1.9)

A similar analysis for a strip-shaped subsystem Astrip of width ` yields

	SAstrip

	EAstrip

D
p
� �

�
1

2.d�2/
�2
�
�

1
d�2

�

2 ..d � 1/2 � 1/ �
�
1
2

C 1
d�2

�
�
�

d�1
2.d�2/

�2 ` : (8.1.10)
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These results show that when the size of subsystem A is small, i.e., (8.1.4) holds,
then the change of entanglement entropy	SA is directly proportional to the change
in energy	EA in A. The constant of proportionality depends on the shape of A, as
is clear from (8.1.9) and (8.1.10). One can therefore motivate a statement of the first
law of entanglement thermodynamics [164]:

	SA D 1

Tent
	EA : (8.1.11)

Tent may be viewed as a subsystem (and reference state) dependent entanglement
temperature which we can write as

Tent / 1

`A
; e.g.; Tent

ˇ̌
ˇ
A

D d C 1

2� R
: (8.1.12)

8.1.2 Relative Entropy and the Entanglement First Law

While we have derived the first law for entanglement entropy (8.1.11) by examining
small subsystems in a holographic setting, let us now see how a general statement
of the entanglement first law follows from the relative entropy in any QFT [56]. We
have already indicated some of this in our discussion in Sect. 2.5, but it is instructive
to re-examine those statements in light of the current discussion.

The first law of entanglement follows from the stationarity of relative entropy
for perturbation about a reference state (2.5.8). It relates the linear change in the
modular Hamiltonian to the change in the entanglement entropy. One way to read
the expression is that a state �0 is indistinguishable from another �0 C � �1 to O.�/
by examining the entanglement alone. In our discussion of Sect. 8.1.1, we picked
an excited state, which one would expect to be clearly distinguishable from the
ground state. It certainly would be if we focused on the macroscopic features of the
excitation. Should we however only ask questions about relatively small subregions
and the reduced density matrix induced thereon, then we are restricting attention to
a very small part of the information available. The reduced density matrix for the
excited state jEi is almost indistinguishable from that of the vacuum as long as we
satisfy the condition outlined (8.1.4). Within this limit, one is guaranteed to find

�A.jEi/ � �A.j0i/C O.E `dA/ (8.1.13)

where E is the typical energy scale of the excited state. It then follows from our
earlier observations that:

S.�A.jEi/jj�A.j0i/ D O.E2 `2dA / ; (8.1.14)

and therefore

	SA D hKAi ; at O.E `dA/ (8.1.15)
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It is easy to see that the first law of entanglement entropy is the canonical fine-
grained version of the first law of thermodynamics. Take �ˇ D 1

Z.ˇ/ e
�ˇH to be

the thermal Gibbs density matrix and � to be any non-equilibrium density matrix.
Clearly,

S.�jj�ˇ/ D ˇ
�
F.�/� F.�ˇ/

� � 0 ;

F.�/ D Tr .H �/C T Tr .� log �/ D E� � T S�
(8.1.16)

which expresses the familiar statement that the free energy is minimized by
the global equilibrium state. Indeed, in our computation of Sect. 8.1.1, had we
considered the reference state to be the thermal state at temperature T and taken
the size `AT 
 1, then we would have recovered the standard thermodynamic
first law 	E D T	S, i.e., (8.1.11) with Tent replaced with the real temperature T.
Pictorially this follows from Fig. 6.6 or equivalently from our discussion of Araki-
Lieb saturation in Sect. 6.3.

The relative entropy perspective coincides precisely with the derivation of (8.1.9)
for spherical entangling regions in a CFTd. For such regions, the modular Hamil-
tonian, Kball, can be expressed as an integral of the energy-momentum tensor
confined to A as described in Eq. (6.1.48). Using (8.1.3), we immediately arrive
at hKball i D 2�

dC1 R	EA confirming that (8.1.9) and (2.5.8) are identical. For
more general regions, the modular Hamiltonian KA is not simply related to the
Hamiltonian. Nevertheless, for microscopic regions satisfying (8.1.11), one may be
tempted to interpret hKA i � 1

Tent
	EA.

Let us close this discussion with an interesting observation for the holographic
principle in gravitational dynamics. It was suggested in [165] that the positivity of
relative entropy (2.5.2) should be viewed as the origin of the Bekenstein bound
[166]. The latter bounds the total entropy in a given volume of a gravitational theory
in terms of the energy E contained therein and its size S 	 2� kB„ c E R. Its covariant
generalization due to Bousso [167] was recently proved in [168, 169] using a related
set of ideas.

8.2 Entanglement Dynamics in Locally Excited States

Let us now abandon the assumption of spatial homogeneity and study the dynamics
of entanglement entropy in a class of inhomogeneous excited states. To extract new
information, we want to work in a regime in which the universal features owing
to the first law are not applicable, so we necessarily will have to work outside the
regime of (8.1.4). A prototypical example of such a problem is to consider locally
excited states, obtained by acting with a local operator on the ground state of a CFTd.
We shall now discuss the propagation of entanglement in such CFT states following
[170, 171]. The discussion will employ the replica method to compute the (Rényi)
entanglement entropy.
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Consider a Euclidean CFTd on R
d with coordinates expressed by .tE; xd�1/. We

define the excited state j‰i by acting an operator O on the ground state j0i:

j‰i D N e��� H � O.xi/ j0i ; (8.2.1)

where N is a normalization factor ensuring that h‰ j‰ i D 1. The exponential
factor e��� H refers to a UV regularization of the local operator designed to eliminate
the UV modes of the operator, by choosing �� to be sufficiently small. The
normalization constant N is finite owing to this regularization. The excited state
j‰i cannot be regarded as a small perturbation from the vacuum state. For instance,
its total energy scales like ��1� 	O , where 	O is the conformal dimension of the
operator O.x/.

We pick A to be the half-space A D fx1 � 0; yd�2 2 R
d�2g and insert the

operator at the point fx1 D �`; yd�2 D 0g 2 Ac. We will compute the Rényi entropy
and be interested in the entanglement created by O which is captured by 	S.q/A D
S.q/A .j‰i/ � S.q/A .j 0i/. We will carry out the computation in the Euclidean domain
and thence analytically continue to find the real time behaviour. Note therefore that
unlike our discussion in Chap. 2, we are assuming that the state j‰i satisfies the
requisite analytic properties, which we can ensure by obtaining j‰i by slicing open
an Euclidean path integral. We will later describe a situation that explicitly works
in the real time domain. With this understanding, the density matrix for the full
system is

�.t/ D e�i H t e��� H O.x/ j0i h 0 j O.x/e��� H eiH t

� O.t�E ; x/ j0i h 0 j O.tCE ; x/
(8.2.2)

in which we set tĖ D ˙�� � i t.
Once we have �.t/, we compute S.q/.t/ in the Euclidean path integral formulation

as in Sect. 2.3, computing Tr
�
�
q
A
�

as defined in (2.3.6). The boundary manifolds are
B D R

d with the operator O inserted at .tĖ ; x/ as noted above. The qth branched
cover spacetime Bq will then be q copies of Rd glued cyclically across A, with the
added feature that each sheet will contain a pair of operators inserted, for a total of
2q operator insertions (Fig. 8.1).

At the end of the day, we are required to compute the following expression to
obtain	S.q/A [170, 171] (see also [172]):

	S.q/A D 1

1 � q

�
log

ZqŒO�
Zq

� q log
Z1ŒO�
Z1

�

D 1

1 � q
log

hO.rC;  .q/C /O.r�;  .q/� / � � �O.rC;  .1/C /O.r�;  .1/� / iBq

.hO.rC; C/O.r�; �/ iB1/q
(8.2.3)
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A

A

A

x

t

O(r+, τ+)

O(r−, τ−)

O(r+, τ+)

O(r−, τ−)

O(r+, τ+)

O(r−, τ−)

Fig. 8.1 The Euclidean geometry Bq involved in the computation of Zq illustrated for q D 3. The
main difference from the computation depicted in Fig. 2.6 is that we now have a pair of operator
insertions on each sheet. In the polar coordinates, they are inserted at the locations shown; picking
 k to be the polar coordinate in the normal plane to the entangling surface, we insert operators at
O.r

˙
; 

.k/
˙
/ for k D 1; 2; � � � ; q

In the above, ZqŒO� is the partition function with the operator insertions, while Zq is
the vacuum result. We have written the final expression as the ratio of a 2q correlator
evaluated on the branched cover geometry Bq and the two-point function on the
original spacetime B. We also switched to polar coordinates in the normal plane
to the entangling surface: x1 C i tE D r ei  with  2 Œ0; 2�q� on Bq. The operator
insertions are at x1 D �`; y D 0 on each sheet. We introduce r˙ ei ˙ D �`C i tĖ
and let .q/˙ D ˙ C2�; .k�1/, with k D 1; 2; � � � ; q similar to our earlier discussion
in Sect. 2.3 and Chap. 5, thence leading to (8.2.3).
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8.3 A Free Field Computation

Having formulated the replica calculation of entanglement Rényi entropy	S.q/A .t/
of locally excited states, let us study an explicit example: a free massless scalar field
theory. The action functional is given in Euclidean signature by

S D
Z

ddx
�
.@tE
/

2 C .@x
/
2

: (8.3.1)

While we can carry out the computations in any d, for simplicity we will focus on
the results in d D 2; 4; 6 dimensions only.

Since we are dealing with a free field theory, all we need to know to evaluate the
correlation functions appearing in (8.2.3) is the Green’s function. The 2q correlator
can be obtained therefrom by performing Wick contractions. The non-trivial aspect
is getting the Green’s function on Bq. Working in the polar coordinates .r; /, the
free wave equation we need to solve on Bq is

DG.r; ; yI r0;  0; y0/ �D �ı.x � x0/ ; D �
�
1

r

@

@r

�
r
@

@r

�
C 1

r2
@2

@2
C @2

@y2

�

(8.3.2)

Expanding in the eigenfunctions u.r; ; y/ D u.r;  C 2�q; y/ on D on By (we
recall that  2 Œ0; 2�q�), we can write a spectral decomposition in momentum space
[57, 170]:

G.x; x0/ D 1

2�q

1X

j�0
dj

Z 1

0

dk
Z

dd�2k?
.2�/d�2 I.k;k0/

I.k;k0/ D k Jj=q.k r/ Jj=q.k r0/
k2 C k2?

eik?�.y0�y/ cos

�
 �  0

q
l

�
;

(8.3.3)

in which d0 D 1; dj>0 D 2 and J�.x/ is the Bessel function of the first kind. The
integrals can be done analytically; see the above references for details.

Employing the above Green functions, we can evaluate 	S.q/A directly as noted.
We will look at excited states created by the local operators which are (normal
ordered) monomials of the field 
, viz.,

O D W 
p W p 2 f1; 2; � � � g (8.3.4)

The time evolution of the Rényi entropies can be qualitatively described as follows:
	S.q/A is vanishing for early times t < ` and then starts to monotonically increase
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at t D `, settling down at late times to a constant values 	S.q/A
ˇ̌
1. For instance, the

second Rényi entropy for O D 
 behaves as

	S.2/A .t > `/ D
8
<

:
log

�
2 t2

t2C`2
�
; d D 4 ;

log
�

8 t6

`6�6 t2 `4C9 t4 `2C4 t6
�
; d D 6 :

(8.3.5)

We have presented the result in real time after analytic continuation (and taking
�� ! 0). The details of this computation can be found in [171]. In both cases, the
result asymptotes to the same constant 	S.q/A

ˇ̌
1 D log 2. The analysis is similar for

other operators of the form (8.3.4) with p > 1.
We can intuitively understand the behaviour of	S.q/.t/ in terms of free streaming

quasiparticles following our discussion in Sect. 7.5.3. The insertion of the local
operator O creates an entangled pair of quasiparticles at x1 D �` (see Fig. 8.2).
Being massless, they propagate out at the speed of light in opposite directions. They
contribute to 	S.q/.t/ first when the operator insertion comes into the causal past
of @A, which is no earlier than at t D `. In d D 2, this will be precisely at t D `,
but in higher dimensions, since the light-cone opens up in the transverse directions,
we might expect a slower influence. Past this time we will find one member of
the pair in A and another in Ac leading to a growth of entanglement. However,
once all the entangled pairs in the disturbance have propagated out into the two
regions, we will reach a saturation point leading thence to the late time behaviour.
The uni-directional motion away from the source of the operator insertion explains
the monotonic behaviour.

Let us try to understand the saturation value	S.q/A
ˇ̌
1. This quantity is dimension-

independent as long as d > 2 (we discuss d D 2 below separately). The result for

A AAc Ac

� �

t ≤ � t > �

xx

Fig. 8.2 A schematic explanation for the time evolution of 	S.q/A in terms of propagations of
entangled pairs produced by the local excitation into A and Ac. This free streaming quasiparticle
picture explains the results in d D 2 accurately where the left and right movers move at the speed
of light. The higher-dimensional situation is more complex, though one can weakly bound the
propagation by the speed of light
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the dependence on the operator choice parameterized by p is [170, 171]:

	S.q/A
ˇ̌
1 D 1

1 � q
log

0

@ 1

2q p

pX

jD0

�
pCj
�q
1

A ;

	SA
ˇ̌
1 D p log 2 � 1

2p

pX

jD0
pCj log pCj

(8.3.6)

where kCj D kŠ
jŠ.k�j/Š is the binomial coefficient.

We can understand (8.3.6) in the free quasiparticle language. Interestingly, this
allows one to interpret the answer as that of Rényi entanglement entropies for a
quantum system of .p C 1/-dimensional Hilbert space. To see this, consider the
reduced density matrix �A;1 to be the .p C 1/ � .p C 1/ diagonal matrix:

�A;1 D 1

2p
diag

�
pC0; pC1; � � � ; pCp

�
: (8.3.7)

It is then clear that the replica result (8.3.6) can be expressed as

	S.q/A
ˇ̌
1 D 1

1 � q
log Tr ..�A;1/q/ ; (8.3.8)

We can find a clear interpretation of the density matrices (8.3.7) in terms of the
entangled quasiparticle pairs. Free propagation allows us to decompose the field into
left and right movers (in x1) viz., 
 D 
L C 
R. The late time entanglement can be
viewed as arising from the left half Ac.x1 < 0/ with the right half A.x1 > 0/. At
such times we can view the excited state as

j‰i D N W 
p Wj0i D N
pX

jD0
pCj 
 j

L 

p�j
R j0i D 1

2
p
2

pX

jD0

p
pCj j jiL jp � jiR

(8.3.9)

in which j jiL;R are normalized such that h i j j iL;R D ıi;j. One can check that (8.3.9)
reproduces the density matrix (8.3.7) upon tracing out the left-movers. For the p D 1

operator, the state simply corresponds to a maximally entangled 2-state system, i.e.,
an EPR state.

The analysis proceeds along similar lines in d D 2. The one distinction is
that (8.3.4) are not primary operators in the theory, so we pick (� 2 R):

O1 D W ei�
 W O2 D W ei�
 W C W e�i�
 W : (8.3.10)
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The replica calculations show that 	S.q/A and 	SA vanish for the operator O1. On
the other hand, for the operator O2, we obtain the following non-trivial result

	S.q/A D 	SA D
(

0 ; t < `

log 2 ; t > `
(8.3.11)

This can again be explained by the free quasiparticle picture. In d D 2, the left-
right decomposition is exact, since 
 D 
L.t C x1/C 
R.t � x1/. The excited state
O1 j0i Djei� 
LiL jei� 
RiR which is a product state with no entanglement. However,

O2 j0i D 1p
2

�
jei� 
LiL jei� 
RiRC je�i� 
LiL je�i� 
RiR

�
(8.3.12)

which, being the maximally entangled state, has entropy log 2 for any q. Further-
more, the transition at t D ` is instantaneous owing to the unidirectional propagation
and the overall result is independent of the operator dimension set by � .

In d D 2, one also obtains qualitatively similar results for interacting but
integrable CFTs such as the rational CFTs. In these examples, one finds the abrupt
jump in 	S.q/A at t D ` from zero to the universal answer in terms of the quantum
dimension, d˛, [173]:

	S.q/A D log d˛ : (8.3.13)

It is interesting to contrast this behaviour in integrable systems with that obtained
from holography, which is more characteristic of ergodic dynamics.

8.4 Local Excitations in Holography

A natural arena for us to study entanglement dynamics in interacting CFTs is the
class of holographic theories. Here the semiclassical gravity helps us figure out the
behaviour whilst a direct computation in field theory is generally challenging. We
will describe two models in the course of our discussion: a simple analytic model
of a local quench in terms of a massive particle in AdS [174], and a more involved
numerical simulation of a CFT deformed by external sources [175].

8.4.1 Massive Particle Excitation

Let us first try to find a holographic incarnation of the locally excited state (8.2.1).
If the excitation was localized in a region of width w� , then using the scale/radius
duality as in Sect. 8.1.1, we learn that the geometric picture will have a
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corresponding excitation near z � w� . We could imagine creating a localized
lump of energy at this locale in the bulk; gravitationally this will fall in towards the
core of the AdS spacetime. The simplest model implementing this protocol is to use
a localized massive particle, of mass m, which falls in from z D w� .

To see that this is indeed the right picture, realize that (8.2.1) suggests that for
convergence, we should shift the operator insertion to imaginary time. We create a
localized lump at tE D ��, evolve in Euclidean time forward by �, and thence switch
to the real time evolution. The excitation woven into the Euclidean path integral may
be interpreted as an instantonic event occurring at tE D ���. It manifests itself at
t D 0 in the Lorentzian spacetime at a scale set by its energy. Interpreting this
holographically using the scale/radius duality, we are led to a massive particle.

To keep the analysis simple, we can assume that t D 0 is a moment of time
symmetry and write down the solution for t < 0 as the time-reflected version. This
means that we can consider a state wherein a widely distribution energy excitation
moves forward to cohere in a fine-tuned manner to give the state O j 0i at t D 0

which thence evolves normally by dispersing the energy. The trajectory of the
massive particle (of mass m) can be worked by solving for a timelike geodesic
(symmetric about t D 0) in the Poincaré-AdSdC1 metric (4.2.5); one finds

z.t/ D
q
t2 C w2� (8.4.1)

Its proper energy in the bulk geometry accounting for the AdS redshift is given by

E D m `AdS

w�
: (8.4.2)

This energy in the bulk. translates via the AdS/CFT dictionary to the conformal
dimension of the operator O which creates the locally excited state, cf., (4.2.13):
	O D m `AdS. To ensure that the excitation is localized on a scale ��, we must take
�� ' w� and also choose 	O 
 1 to ensure that we are describing a high energy
localized excitation.

To actually determine the gravity dual of the locally excited state, we need to
allow the particle to backreact on the AdS geometry. At this point, rather than try to
solve Einstein’s equations with a localized source of bulk energy-momentum (which
we explain in Sect. 8.4.2), we can use the AdS isometries to generate a reasonably
good approximate solution, which exhibits the correct qualitative behaviour.

The trick is to view the geometry outside the massive object as that of a
black hole. This ought to be familiar from the static configurations (where it
follows from Birkhoff’s theorem). We now have an inertial massive particle in
gravitational free-fall. All we need to do is allow the black hole to follow the
particle’s trajectoy (8.4.1). This is easily done, by simply boosting the known global
Schwarzschild-AdSdC1 solution (4.2.8), employing the AdS isometries to figure out
the relevant coordinate transformations [176].
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We start therefore with (4.2.8) with

m D .d � 1/ ceff !d�1
M

`dC1
AdS

D .d � 1/ ceff !d�2 �d�2C

 
1C �2C

`2AdS

!
(8.4.3)

Starting from (4.2.8), we perform a bulk diffeomorphism that acts as a boost
on the black hole solution. Parameterizing the boost by � , the coordinate change we
seek is a boosted version of the one that maps global AdS to the Poincaré one (4.2.7)

q
`2AdS C �2 cos tg D `2AdS e

� C e�� .z2 C x2 � t2/

2 z
q
`2AdS C �2 sin tg D `AdS t

z
;

��i D `AdS xi

z
; i D 1; 2; � � � d � 1 ;

��d D �`2AdS e
� C e�� .z2 C x2 � t2/

2 z
;

(8.4.4)

A particle following an inertial trajectory � D 0 in global AdS maps to the trajectory
z2 � t2 D `2AdS e

2 � in Poincaré-AdS, which means that matching with our desired
path (8.4.1)

w� D `AdS e
� : (8.4.5)

Since (8.4.4) is a bulk diffeomorphism that acts as a boundary conformal
transformation, we can obtain the energy-momentum tensor for the boosted black
hole. Using the expression of h T�� i for the holographic energy-momentum tensor
in the black hole background [see, for example, (8.1.3)] we obtain for the solution
in AdS3 (d D 2), we find in light cone coordinates u D t � x1 and v D t C x1

h Tuu i D 2 ceff
M

`2AdS

R2

.u2 C w2�/
2
; h Tvv i D 2 ceff

M

`2AdS

w2�
.v2 C w2�/

2
; hTuv i D 0

(8.4.6)

The total energy integrating h Ttt i is indeed as given in (8.4.2). The energy
momentum tensor has a two-peak distribution at x1 D ˙t corresponding to lightlike
propagation of the local excitation in the CFT. The overall size of the energy lump
is controlled by w� with w� ! 0 leading to sharply peaked energy disturbance in
the theory.

Let us now compute the holographic entanglement entropy in this setup. We
focus on d D 2 in which the computations can be done analytically, while in d > 2,
we can obtain the results numerically. We take A to be an interval in x D x1 2
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.`1; `2/. While we want to find the surface in the boosted black hole geometry with
the asymptotic Poincaré metric, since the geometry is related to the global BTZ
spacetime (4.2.11) by a coordinate transformation, we can equivalently solve for
the surfaces in the latter and then apply the transformation. The effect this has on
the boundary regions is explained, for example, in [111]. In what follows, we will
use the BTZ horizon size rC to derive various expressions. Note however that we
can get results for massive particles, i.e., conical defects in AdS3, by taking r2C D
`2AdS .1 � �/ with � 2 Œ0; 1�. The limiting case � ! 0 is the pure AdS3 spacetime
as explained earlier.

Consider then the global BTZ solution (4.2.11) for which the extremal surface at
t D 0 is given by (6.1.31). Since the transformation (8.4.4) involves time as well, we
need to ascertain spacelike geodesics anchored not just at t D 0, but with arbitrary
endpoints. This can be done by solving the geodesic equations resulting from

S D
Z
'

s

r2 C `2AdS

r2 � r2C
r0.'/2 � r2 � r2C

`2AdS

t0g.'/2 : (8.4.7)

Note that there are two conserved quantities, energy e and angular momentum j,
associated with the two Killing fields @t and @' . In terms of these, we can write

dtg
d'

D m1 r2

r2 � r2C
;

dr

d'
D r

`AdS

s

m1 r2 C
�
m2

r2

`2AdS

� 1
�
.r2 � r2C/;

(8.4.8)

in which we introduced the dimensionless combinationsm1 D e `AdS
j

and m2 D `2AdS
j

.
The one other thing we need to do is to map the endpoints of the interval A,

ft; x D `1; z D �g and ft; x D `2; z D �g to the global presentation, which
can be done straightforwardly from (8.4.4) by plugging in for the endpoints and
using (8.4.5). To wit,

tan tg;.i/ D 2w� t

`2i � t2 C w2�
; tan'.i/ D � 2w� `i

`2i � t2 � w2�
;

r.i/ D e�

�

r
w2� `

2
i C 1

4
.`2i � t2 � w2�/

2 :

(8.4.9)

In terms of these variables, we can finally end up with

SA D c

6

 
log

 
r.1/ r.2/

r2C

!
C log

�
2 cosh

�
rC
`AdS

j 	' j
�

� 2 cosh
�

rC
`AdS

j 	tg j
��!

(8.4.10)
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Fig. 8.3 The time evolution of the holographic entanglement entropy 	SA (normalized by 3 `AdS
� cw�

)
given in (8.4.13) for a locally excited state. The plot on the left shows 	SA.t/ for different values
of � D f0:1; 0:15; 0:2; 0:25g at fixed ` D 5 `AdS, while that on the right displays the same for
fixed � D 0:1 `AdS but varying ` 2 f2; 3; 4; 5; 6g `AdS

in which	' D '.2/ � '.1/ is assumed to lie in .0; �/ and	tg D tg;.2/ � tg;.1/. If the
angular difference of	' is larger than � , then we replace	' 7! 2� �	' and add
the contribution from the horizon as in (6.1.34).

Let us first examine the result for a symmetric interval `1 D `2 D `; since the
excitation occurs at the mid-point x D 0, we find t0g.'/ D 0, so we restrict ourselves
to constant global time geodesics. Assuming that our region is large on the scale of
the disturbance ` 
 w� D `AdS e� so as to concentrate on localized excitations, we
find the behaviour of SA.t/ as shown in Fig. 8.3 [174]. The entanglement entropy
increases monotonically following the injection of the localized disturbance, peaks
at t ' ` and then reverts back monotonically to its pre-quench value. In the bulk,
the massive particle excitation is closest to the boundary at time t D ` leading to
the strongest backreaction. This has the effect of the extremal surface maximally
towards the boundary at t ' ` leading to the observed behaviour. This also makes
sense from the field theory perspective using the heuristic quasiparticle picture
explained earlier. It takes t � O.`/ for the excitations to causally influence the
entangling surface. Since we have a finite width, we see effects before this time, but
the strongest response occurs when the disturbance causally influences @A.

It is instructive to look at the situation in which we really have a massive particle
and not a BTZ black hole. As explained, we can obtain this by setting r2C D
`2AdS.1 � �/. Perturbation theory for small masses � � 1 leads to

	SA D � c

3 `2AdS

�

�
`w� C .`2 � t2 � w2�/ arctan

�
2 `w�

t2 C w2� � `2

��
(8.4.11)

which indeed displays the aforementioned behaviour.
Having understood the situation for a symmetric region, now we turn to an

asymmetric one. W.l.o.g. let us choose `1 D 0; `2 D `. Then we expect 	SA
to be non-trivial for t 2 .0; `/ from the quasiparticle picture and to revert back
to zero at late times. The domain where we expect non-trivial time evolution is
` 
 t 
 w� . In this limit, the two endpoints of geodesic in the global coordinates
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reduce to

ftg;.1/; '.1/; r.1/g '
n
� � 2w�

t
; 0 ;

`AdS t2

2 �w�

o
;

ftg;.2/; '.2/; r.2/g '
n2 t w�
`2

; � � 2w�
`

;
`AdS `

2

2 � w�

o
:

(8.4.12)

This results in a logarithmic behavior of entanglement entropy [174] in this
intermediate time regime

	SA ' c

6
log

t

w�
C c

6
log

�
1p
1 � �

sin
�
�
p
1 � �

��
: (8.4.13)

If we consider a semi-infinite subsystem by sending ` ! 1, then we see that this
logarithmic behaviour continues forever.

This logarithmic behaviour for A being half-space is very different from the
behaviour seen in free field theories in which 	SA approaches a finite constant
at late time, cf., Sect. 8.3. The distinction can be traced to the fact that the
latter example involves integrable excitations; so any disturbance stays confined
to the particular sector of modes that are initially created. Holographic systems
are expected to be ergodic and any disturbance has the propensity to continue
to influence all sectors of the theory. This process may continue long after the
localized excitation was introduced, and this is precisely the causative mechanism
for the late time behaviour in (8.4.13). While the result was derived using an explicit
holographic mode following [174, 177], it is nevertheless possible to reproduce the
above purely from a CFT analysis in the large central charge limit [178]. We will
review this calculation in Chap. 12.

8.4.2 Operator Deformations

In the preceding analysis, we assumed that the quench is modeled by picking
some regulated Euclidean state which we then analytically continue and evolve
in Lorentzian time. It has the major advantage of being eminently tractable in
the holographic setting, and even in field theory one can get away by analytically
continuing Euclidean correlators.

One may however wonder whether we can analyze dynamics of QFTs deformed
by time-dependent sources. We imagine taking a theory in a quantum state and
changing the evolution, turning on a classical background source for some operator,
viz., SQFT 7! SQFT C R

ddx J .x/;O.x/. One can keep the sources sufficiently well
localized, so that does conform to the idea of a local quench.

In [175] such a scenario was studied holographically by perturbing a thermal
equilibrium state of a CFT3 using a local scalar operator. The quench protocol in this
case was parameterized by various parameters: the operator dimension and details
of the source function. Given this data, one has to solve Einstein’s equations to
determine the dual gravitational solution.
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At a heuristic level, we can understand the dual geometry in a similar vein to the
falling particle. Only now we have a localized source of energy-momentum inserted
at the boundary. Its influence spreads out causally in the bulk affecting the bulk
causal future domain, deforming the metric therein. Since the inhomogeneity breaks
all the symmetries, we now no longer can intuit an analytic solution, but must resort
to numerics. A beautiful scheme for studying some problems in AdS spacetimes was
developed by Chesler and Yaffe [179]. The idea is to work with ingoing coordinates
so as to retain manifest causality and simultaneously simplify the time equation
using a characteristic formulation of Einstein’s equations.

Consider a local quench in d D 3, in which we retain translation invariance in
one-spatial direction, say y, and localize the source deformation in x. The geometry
dual to this field theory setup can be described by the metric:

ds2 D �2A e2� dt2 C 2 e2� dt dr � 2Fx dtdx C†2
�
eB dx2 C e�B dy2

�
; (8.4.14)

where the metric functions fA; �;Fx; †;Bg depend on .t; r; x/ and have to be solved
for numerically. Having obtained the numerical solution, one can explore various
observables in this framework.

While these coordinates are chosen to manifest causal bulk propagation explic-
itly, they are not valid in the entire spacetime domain. The process one is describing
eventually becomes a violent gravitational collapse phenomenon and so there are
regions of high curvatures which are presaged by the presence of apparent horizons.
They can be defined once we pick a foliation of the spacetime by Cauchy slices. On
each leaf of the foliation, we look at codimension-2 surfaces and decide whether
they are trapped or not. To do so, starting from one such surface, we follow a
null geodesic congruence in the two future directions, outwards and inwards, along
the null generators N.o/A and N.i/A in a manner similar to our discussion of extremal
surfaces in Sect. 4.3. If the expansion of the congruence as defined in (4.3.5) is non-
increasing in both directions, then the surface is said to be trapped. The outermost
trapped surface is the one where the outgoing geodesic congruence is just non-
expending K.o/ D 0, with K.i/ < 0. We define the union of such outermost trapped
surfaces along all the leaves as being the apparent horizon.

The main advantage of the apparent horizon is that it is a local characteristic of
the collapse; it can be obtained by studying local properties of the spacetime. In
contrast, the black hole event horizon is by definition teleological, for it is defined
as being the locus of points which are causally disconnected from the boundary.
To ascertain where the event horizon lies, we need to determine the entire history
of the spacetime and thence determine which are causally inaccessible regions. For
instance, in the metric (8.4.14), we determine it to the locus where the following
differential condition is satisfied:

�
.@t C A @r/† � e�B

2†

�
Fx @xB � @xFx � e�2� F2x

@r†

†

��

rDrh

D 0 : (8.4.15)
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We note that the apparent horizons are generically spacetime codimension-1
timelike hypersurfaces as they lie inside the event horizon.

These issues are important in the context of our discussion for the following
reason. The coordinate chart used in (8.4.14) is valid for the region exterior to
the apparent horizon r > rh defined in (8.4.15), which inevitably forms in the
collapse process owing to the attractive nature of gravity. Now we are interested
in analyzing entanglement dynamics in local quenches and would like to compute
boundary-anchored extremal surfaces in the geometry (8.4.14). This can be done for
small enough boundary regions, in so far as the extremal surfaces do not penetrate
the apparent horizons. This turns out to be sufficient to capture some features of
the dynamics, but unfortunately not all. We have seen in the analysis of global
quenches that attractor surfaces like the surface E?, (7.5.14) discussed for the
eternal Schwarzschild-AdSdC1 black hole play an important role in the late time
dynamics of entanglement entropy. Therefore if we want to analyze the full gamut
of behaviour of entanglement entropy, especially for regions that are large, then we
need access to the regions inside apparent horizons as well.

In the geometry (8.4.14), one can study entanglement entropy for moderately-
sized regions, which are macroscopic on the size of the localized disturbance. In
[175], this strategy was used to study the behaviour for a thermal state in a CFT3 at
temperature T perturbed by a source J	D2/.x; t/ for a scalar operator of dimension
	 D 2. The results of this simulation for a particular choice of sourcing are plotted
in Fig. 8.4. For strip-like regions A chosen to exploit the translational invariance in
y, it was found that the behaviour of SA.t/ determines an effective causal structure
for early to mid-time propagation of SA.t/.

t

ΔSA(t)

Fig. 8.4 The time evolution of the holographic entanglement entropy in local quench models in
which we turn on sources for relevant operators to achieve the quench. The model described in
[175] quenches a homogeneous thermal state at temperature T of a CFT3 by a dimension 2 scalar
operator with source J	D2.t; x/ D ˛

2

�
tanh

�
5
3
.x C 2/

�� tanh
�
5
3
.x � 2/

�
sech2.4 t � 8/. The

plot above is for a subsystem Ak of length ` D 1:6 and quench protocol is taken to have amplitude
˛ D 0:5 starting from a thermal state with T D 0:1108. There is clear linear growth towards the
maximum, followed by rapid reversion to the equilibrium value. The solid red curve displays an
exponential fitting function to illustrate this rate of return
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Defining an entanglement rate as in (7.5.21), one finds a linear behaviour
resulting in an entanglement velocity vE. Unlike the global quench, this velocity
depends on the details. It is bounded by the causal value of unity above, but appears
to be bounded below by the tsunami velocity. These limits being attained in the
well-localized quench and a scenario involving near global quench insofar as A
is concerned, one may intuitively attribute the spreading of SA.t/ to dominance
of UV and IR entangled quanta within A. The late-time return to equilibrium of
SA.t/ appears to be exponentially fast. This appears to be in sharp contrast with
the logarithmic behaviour obtained in (8.4.13) for the quench modeled as a falling
heavy particle. We can understand the distinction as follows. The logarithmic growth
is a good approximation for time-scales on which the point particle approximation
holds. This will fail once the excitation spreads out over a large enough region.
The numerical solution stays valid in this region since we are allowing the field
configuration to evolve by its dynamics and suggests a fast exponential return to
equilibrium.



Chapter 9
Holographic Many-Body Systems

Having understood some features of entanglement dynamics in QFTs, we now
would like to explore how the circle of entanglement-related ideas helps us
understand features of many-body systems. The general class of systems that is
of interest in this context is that of many electron systems, which lead to various
phases of matter depending on the details of the interactions etc. Over the course of
the last few decades, we have come across many exotic phases of many-electron
systems, metallic, insulating, superconducting, semi-conducting, and even more
exotic topological phases of matter. Of these perhaps the most fundamental and
well understood phase is the metallic phase, which is described for the most part by
Landau’s Fermi liquid theory.

A metallic phase of matter is primarily characterized by the presence of Fermi
surfaces. Imagine for a moment that we are not dealing with metals but rather a gas
of electrons. By virtue of fermionic statistics, the electrons obey Pauli’s exclusion
principle; at most two fermions can occupy the same energy level, taking into
account the internal spin degree of freedom. Therefore the electrons start to occupy
the lowest energy states and fill the states up to a certain energy level, called Fermi
energy. Working in momentum space, the states with Fermi energy are typically
distributed on a codimension-1 hypersurface, the Fermi surface. This picture which
is true for a free gas of electrons gets modified in a real material, owing to
Coulombic and other interactions. The main thesis of the Fermi liquid theory is
that we can treat these interactions perturbatively in the low energy regime, leading
thence to a picture in which the low-lying modes are perturbative quasiparticles
(Coulomb dressed/screened electrons). The low energy theory of these fermionic
quasiparticles is the Fermi liquid theory, which has been extremely successful in
explaining physical properties, e.g. thermodynamic features such as the equation of
state, as well as transport properties like conductivity.

However, this simple metallic phase is not the correct low-energy theory should
the electrons be strongly correlated. In this situation, one finds unsurprisingly
anomalous physical properties from the perspective of the free quasiparticle picture.
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A class of such material phases is known as strange metals or non-Fermi liquids,
thus characterizing them by what they are not. Typically in this phase, electrons
strongly interacting with some bosonic degrees of freedom, such as an emergent
gauge field. Interactions are no longer ignorable and perturbative treatment is
inadequate. While there have been many attempts to develop new techniques to
study these phases, an interesting approach developed in the last decade which has
proved to be very powerful is to use holography. Now as we have seen extensively,
holographic systems are not simple electron systems and involve a large number of
species to make the semiclassical gravitational picture work. Nevertheless, it turns
out to be possible to use holographic techniques to model phases analogous to those
seen in real materials using planar field theories at strong coupling. This suggests
that there is some universal aspect of low energy, strong coupling quantum dynamics
that might be accessed by invoking a gravitational dual even when the microscopic
constituents fail to warrant such a treatment. There are numerous reviews on this
remarkable confluence of ideas: we refer the interested reader to [180, 181, 182]
among others for an in-depth treatment of what holography has to offer for many-
body physics. Our current interest is to take as given the holographic map and use
it to understand properties of quantum entanglement in states with Fermi surfaces.
To this end, we will primarily describe gravity duals which display similar quantum
entanglement behavior.

9.1 Fermi Surfaces and Entanglement

Consider a Euclidean QFT in a d-dimensional spacetime R
d with coordinates

.t; x1; x2 � � � ; xd�1/ and take the subsystem A to be a strip of width ` say, stretched
out, in the x1 direction1

A D ˚
.t; x; Ey/ 2 R

d j t D 0 ; �`
2

	 x1 	 `

2
; 0 	 xi¤1 	 L

�
: (9.1.1)

For the state of the theory, we will assume that the microscopic constituents are
fermions and have a ground state with a Fermi surface. Our first task is to ascertain
the behaviour of SA in the presence of this Fermi surface. Now the Fermi surface

is a locus k D
qP

i k
2
i D kF in momentum space. Assuming that the dispersion

relation for the single particle states in the theory is linear, so that our theory is scale-
invariant, E D jkj, the Fermi energy is given to be EF D kF. The Fermi energy is an
emergent low energy scale IR in the theory (in this case due to particle statistics).

1In keeping with the rest of the discussion, we will continue to use d for spacetime dimension. If
we need to single out the temporal dimension, as is common in condensed matter physics, in which
Lorentz invariance is broken, we will use ds D d � 1 to denote space dimension.
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Let us first record the result for the entanglement entropy of the strip in the
presence of the Fermi surface. Assuming the subsystem A is macroscopic on the
IR scale set by the Fermi energy, viz., ` kF 
 1, we find

SA D aUV

�
L

�

�ds�1
C aIR .L kF/

ds�1 log.` kF/C O.`0/ ; (9.1.2)

where aUV and aIR are certain positive constants. The former is of course the leading
area law divergence familiar from (2.4.2).

Before diving into the derivation of (9.1.2), let us record what is known from
explicit computations in condensed matter literature. Suppose we consider a lattice
model for a many-body system. In this situation, there typically exist just a few
electrons on each site. Therefore the Fermi momentum kF is the same order as the
UV cut-off scale, or inverse of the lattice constant �. Consequently the second term
in (9.1.2) dominates over the first term. In particular, when L � `, for a variety of
regions (including a round ball), one obtains a remarkably universal answer:

SA D aIR OLds�1 log OL C � � � : (9.1.3)

Here, OL � L=� represents the number of lattice points on the length L interval. The
expression (9.1.3) has been proven for Gaussian Hamiltonian systems with only
local interactions [183, 184]. It is also known that the same expression is applicable
in a strongly interacting phase called the spin liquid phase [185], which is closely
related to non-Fermi liquids. Given this evidence, it is reasonable to expect (9.1.2)
and (9.1.3) to hold in continuum QFTs and lattice models, respectively, independent
of whether the system is in a Fermi liquid or non-Fermi liquid phase. One may argue
that these expressions capture the presence of the Fermi surface and are agnostic
about the nature of the low energy interactions.

With this in mind, let us give an intuitive derivation of the behavior in (9.1.2) for
free field theories [10, 186]. Consider a free massless fermion field which we place
on a ds D d � 1-dimensional spatial torus Tds of size L. The momenta are quantized
as ki D ni

L with ni 2 Z. The ground state of the system, which corresponds to a filled
Fermi surface, is given by

j‰i D
Y

jkj<kF
b�n1;n2;��� ;nds j0i: (9.1.4)

If we regard En � .n2; n3; � � � ; nds/ as labels of different sectors, then we have
a 1 C 1-dimensional massive fermion theory for each value of En propagating in
the .t; x/ space. In this two-dimensional description, the Fermi momentum and the

mass are given by k1 D
q
k2F � Ek2 and m D jEkj, respectively. Since the density

matrix is factorized into those for each En sector, the entanglement entropy S.dsC1/A of
the ds C1-dimensional fermion system is evaluated as the sum of 1C1-dimensional
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entanglement entropies S.1C1/A ,

S.dsC1/A D
X

En
S.1C1/A .En/ : (9.1.5)

When jEkj > kF , there is no Fermi surface. So we can evaluate S.1C1/A .En/ by
employing known results in d D 2 field theories:

S.1C1/A � log
`

�
`m � 1;

S.1C1/A � � log.m �/ `m 
 1 ;

(9.1.6)

up to O.1/ contributions, which we ignore. As we focus on macroscopic regions
satisfying ` kF 
 1, we find for jEkj > kF

S.1C1/A .En/ � � log
�
jEkj �

�
: (9.1.7)

On the other hand, when jEkj < kF, there exists a Fermi surface in the two-
dimensional theory. Taking into account the dispersion relation, we obtain

Ek D
s

jEkj2 C
�q

k2F � jEkj2 C ık1

�2
' kF C

q
k2F � jEkj2
kF

ık1 : (9.1.8)

Near the Fermi surface, the modes with ık1 � kF, are linearly dispersing by the
above approximation. Hence the system behaves like a massless fermion. Summing
up the contribution per mode, we can then estimate S.1C1/A � log

�
`
�

�
.

Using these two approximations and summing up the contributions of modes
with energy below and above the Fermi scale we obtain the following estimate for
S.dsC1/A :

S.dsC1/A � Lds�1
"Z

jEkj<kF
dds�1 k log

�
`

�

�
�
Z

kF<jEkj< 1
�

dds�1 k log
�
� jEkj

�#

� CjEkj<kF .L kF/
ds�1 log

�
`

�

�
C CkF<jEkj

�
L

�

�ds�1
:

(9.1.9)

with the low momentum modes giving rise to the logarithmic term while the high
energy modes give the power law divergence as anticipated in (9.1.2). Note that
there are O.log �/ contributions form the IR and UV, which cancel each out in the
sum.
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There is a simple physical picture of the above result. In the presence of the
Fermi surface, excitations carry transverse and longitudinal momentum, with the
transverse space being one-dimension since the Fermi surface is codimension-1 in
momentum space. One can write ıE � ık? C.ıkk/2. At low energies, we keep track
only of the transverse excitations made up of ık?. In this approximation, the theory
looks like a copy of a CFT2 owing to the linear dispersion (9.1.8), at each point on
the Fermi surface. On the other hand, the longitudinal ıkk modes only affect the
Hamiltonian at higher orders. This implies that we can approximate the low energy
Hilbert space as that of a CFT2 labeled by the longitudinal momentum [10, 187],
viz.,

HdsC1
tot ' ˝kk

H1C1
kk

: (9.1.10)

The low energy theory of a Fermi surface is thus a collection of a continuum number
of copies of two-dimensional CFTs. Introducing a UV regulator � to discretize the

Fermi surface, we get effectively
�
L
�

�ds�1 copies of a CFT2 Hilbert space. As the
generic UV behaviour of entanglement entropy in d D 2 exhibits a logarithmic
behaviour, this translates into the IR logarithmic contribution in (9.1.2). This
heuristic picture being clearly agnostic of the nature of the low energy excitations,
one expects the results to therefore apply to any system with a Fermi surface, be it
a Fermi liquid or not.

9.2 Fermi Surfaces in Holography

Now we turn to a holographic analysis of entanglement entropy in strongly coupled
systems using the AdS/CFT, with a view towards understanding how gravitational
systems may reproduce the IR logarithmic behavior in (9.1.2) [186]. The basic
idea of looking for Fermi surfaces in holographic systems using finite density
configurations modeled as charged AdS black holes was initiated in [188]. It was
soon realized that the extremal limit of these black holes provides an valuable model
for studying non-Fermi liquid behaviour in [189, 190]. These ideas were crystallized
in field theory terms in terms of a semi-holographic picture of a microscopic
Fermi system interacting with a strongly coupled low-energy IR sector [191]. The
interested reader may find [192] a good starting point for these developments.

Our interest is in taking the logarithmic IR behaviour of entanglement entropy
seriously and attempting to reverse engineer a geometry that has the requisite
features. To keep the discussion simple, we shall consider ds D 2 and thus work with
an asymptotically AdS4 geometry. To begin with, let us assume that the ground state
of the putative many-fermion system respects translational and rotational invariance.
We may then parameterize the metric in a familiar form,

ds2 D `2AdS

z2
��f .z/ dt2 C g.z/ dz2 C dx2 C dy2

�
: (9.2.1)
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f .z/ and g.z/ are arbitrary positive functions which are required to limit to unity at
the AdS4 boundary which is as usual located at z D 0

For our subsystem, we consider again a strip A D f.x; y/j � `
2

	 x 	 `
2
; 0 	

y 	 Lg which allows us to parametrize the extremal surface by x.z/ upon using the
available symmetries. The action function and the equation for the surface are easily
written down:

S D 8� ceff

Z
dz2

z2
p
g.z/C x0.z/2 ; ıS D 0 H) x0.z/ D z2

z2�

vuut g.z/

1 � z4

z4
�

:

(9.2.2)

where z� is the maximal value of z attained (the turning point) and we exploited the
existence of a conserved quantity to get a first order equation. With this at hand, we
can write:

SA D 8� ceff

Z z�

�

dz

z2

vuut g.z/

1 � z4

z4
�

; `.z�/ D 2

Z z�

0

dz
z2

z2�

vuut g.z/

1 � z4

z4
�

: (9.2.3)

Note that since we are dealing with the ground state, we have no temporal
information. As a consequence, we don’t yet see any role for f .z/, but we will be
able to constrain it later.

Let us estimate the entanglement entropy assuming some parametrization of
the function g.z/. Suppose we approximate it as a monomial outside some open
neighbourhood of the boundary, say

g.z/ '
8
<

:

�
z
z0

�2n
; z 
 z0

1 ; z � z0 :
(9.2.4)

The parameter z0 describes the scale where the metric starts to deviate from that of
the pure AdS4. Assuming z� 
 z0 so that the extremal surface samples the region of
spacetime that has by assumption been deformed by the Fermi surface, we estimate

SA D 8� ceff L

�
1

�
C dn

zn�1�
zn0

�
; ` � cn

znC1�
zn0

;

H) SA ' 8� ceff L

 
1

�
C fn

1

z0

�
`

z0

� n�1
nC1

! (9.2.5)

where cn; dn; kn are some positive constants whose details depends on the explicit
geometry.
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The two contributions to the final answer should be by now intuitive. The first
term is the universal UV area law divergence, while the second is the IR contribution
owing to the deformation of the geometry in the interior. The latter gives a maximal
contribution when n ! 1, whence .SA/IR / `. This is consistent with the fact
that the maximal entropy attainable is bounded by the dimension of the Hilbert
space, which scales like the volume. This would occur, for example, if the IR
geometry were capped off as in a black hole geometry, in which we see the extensive
contribution.

If we are interested in reproducing the Fermi surface entanglement
pattern (9.1.2), then we have a unique choice; set n D 1 whence

SA ' 8� ceff L

�
1

�
C f1

z0
log

�
`

z0

��
(9.2.6)

We can interpret this result as representing the contribution ofO.ceff/ Fermi surfaces
(one per species) in the bulk, each with Fermi energy set by the IR cut-off O. 1z0 /. A
similar result can be derived for entangling regions which are disk-shaped.

Imposing that we get a logarithmic contribution to the entanglement entropy from
the IR, we managed to constrain g.z/. This leaves f .z/ undetermined. One way to
proceed would be to consider more general subregions that are not anchored on a
constant time slice—we could perhaps consider boosted intervals which, owing to
the breaking of Lorentz symmetry by the ground state, would be cognizant of f .z/.
We will however constrain f .z/ by demanding that the spacetime metric satisfy the
null energy condition (NEC) (which we rather impose as the null curvature condition
using Einstein’s equations), viz., TAB�A �B � 0 for any null vector field �A. We find
a set of differential relations:

g f 0 C f g0 	 0 ; z g f 02 C f
�
z f 0 g0 C g

�
4 f 0 � 2 z f 00�� 	 0 : (9.2.7)

Once again assuming that in the IR region z 
 z0, the functions f .z/ and g.z/
behave as

f .z/ / z�2m ; g.z/ / z2 n : (9.2.8)

We end up learning that the null energy condition, defined in (9.2.7), demands

m � n : (9.2.9)

This is as far as we can get with the entanglement entropy constraints. We can
impose additional restrictions such as demanding that the specific heat behave as
observed in real world systems. To compute the specific heat, we need equilibrium
thermodynamic data. While we have focused on the ground state, it is easy enough
to heat up the system by converting the gravity solution into a black hole geometry.
We can modify our ansatz (9.2.8) and (9.2.1) for this purpose into a black hole
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metric as follows:

ds2 D `2AdS

z2

�
� 1

z2m
ht.z/ dt

2 C z2 n

hz.z/
dz2 C dx2 C dy2

�
; (9.2.10)

where ht.z/ and hz.z/ will depend on the details of the matter content supporting the
solution. We let there be a horizon at z D zC. This will demand that the functions
parameterizing the metric behave in the near-horizon region as

ht.z/; hz.z/ / zC � z

zC
; z ' zC : (9.2.11)

It is a simple matter to estimate the temperature and entropy of the solution.
Compactifying the spatial directions on a torus of size L, we determine

T / z�m�n�1C ; S / L2

z2C
� L2 T

2
mCnC1

H) C D T
@S

@T
/ T

2
mCnC1

(9.2.12)

Accounting for the constraints, n D 1 for the logarithmic IR contribution in
entanglement entropy and m � n for the validity of the NEC, leads to the following
bound [186]:

C / T˛ ; ˛ 	 2

3
: (9.2.13)

This simple set of observations has the following remarkable implication for
any putative application to many-fermion systems. In Landau’s theory of free
quasiparticles, a salient feature is the linear growth of specific heat with temperature,
i.e., ˛ D 1. This follows essentially from the results readers may be familiar with
in the context of a free Fermi gas. However, a sensible holographic theory (which
we assume upholds the NEC) only gives ˛ bounded above by 2

3
(9.2.13), suggesting

that all holographic models of Fermi surfaces would necessarily give a non-Fermi
liquid!

Let us also finally note that we have been restricting attention to the leading
semiclassical behaviour which gives O.ceff/ entanglement entropy. The matter loops
in the bulk will contribute at O.1/ as described in Sect. 5.4. If we have fermionic
states in the bulk, so long as the bulk ground state admits a Fermi surface, the leading
quantum correction will still manifest the desired logarithmic behavior [193].
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9.3 Gravity Duals of Hyperscaling Violation

In the metric (9.2.1), the IR region was parameterized by power law functions f .z/
and g.z/ as detailed in (9.2.8). Such a solution has been considered to be the gravity
dual of a strongly coupled system with a hyperscaling violation in [194, 195]. In
general, we can always rewrite such metrics in ds C2 dimensions into the following
form [195]:

ds2 D 1

r2

 
r

2�
ds�� dr2 C

dsX

iD1
dx2i � r� 2ds.z�1/

ds�� dt2
!
: (9.3.1)

This metric is invariant under the following hyperscaling transformation:

xi ! � xi ; t ! �zt ; ds ! �
�
ds ds : (9.3.2)

This scaling behaviour rescales times z times more than space; the parameter z is
called the dynamical exponent. In any theory with such spatio-temporal scaling, the
single particle dispersion relation would behave as E / kz. Having z D 1 would
correspond to the familiar relativistic scaling while z D 2 is the non-relativistic
analog. The nomenclature owes to the theory of dynamical critical phenomena and
z characterizes some of the multi-critical points that can arise in these settings.

In the above however we also have an additional parameter � , referred to as
the hyperscaling violation exponent. If � ¤ 0, then the metric is no longer invariant
under the scaling symmetry. Instead it undergoes an anomalous scale transformation
with � measuring the amount of violation of scale invariance, justifying its name.

On the holographic side, we are familiar with the relativistic scaling as in
asymptotically AdS spacetimes with z D 1; � D 0. One can equally consider
geometries of the form (9.3.1) with z ¤ 1 but with � D 0 which correspond to
non-relativistic fixed points with Lifshitz scaling symmetry; geometries with � ¤ 0

have been called Lifshitz metrics as a result [196].
We can once again estimate the specific heat by modeling a black hole in an

asymptotic geometry of the form (9.3.1). The computation being similar to what
we just reviewed, we can immediately write down the answer through dimensional
analysis

C / S / T
ds��

z : (9.3.3)

Note that from the expression for the specific heat, one might infer that the number
of spatial dimensions is ds � � and not ds.

A quantum system with a Fermi surface corresponds to a hyperscaling
exponent� D ds � 1. We can understand this using the aforementioned heuristic.
If the effective spatial dimension is ds � � and if systems with Fermi surfaces
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are effectively one-dimensional scale-invariant systems as in Sect. 9.1, we require
ds D � C 1.

We can show that the geometries we studied in Sect. 9.2 can indeed be written as
hyperscaling metrics (9.3.1). Moreover, by performing the explicit scaling analysis,
we learn that �(9.2.8) D 1 is the right answer in ds D 2 for a system with a Fermi
surface.

In recent years, a lot of effort has been expended on finding physically sensible
gravitational theories with admit the background (9.3.1) as a solution. The canonical
framework works with a class of phenomenological gravitational theories called
Einstein-Maxwell-Dilaton theories (see [194, 186, 195]). While these models have
been great in obtaining thermodynamic and transport properties, care should be
exercised in making any conclusions about their relation to Fermi surfaces. In
general in such systems, it is hard to confidently isolate the low energy excitations
and show them to have a characteristic Fermi surface-like feature [197]. So while
the simple analysis we have carried out gives us some insight, obtaining an honest
dual of a non-Fermi liquid remains an interesting challenge. The holographic
analysis also implies the existence of quantum matter with a much more diverse
entanglement scaling. Taking n > 1 but finite, we can obtain intermediate scaling
behaviour between the logarithmically enhanced IR area contribution and the
extensive volume contribution. While this has been explored further from the
holographic viewpoint, see e.g., [198, 199] for recent discussions, it would be
fascinating if materials with such properties were to be discovered.



Chapter 10
Entanglement and Renormalization

An important milestone in our understanding of QFTs was Wilson’s idea of the
renormalization group [200, 201]. The idea that physics can be organized into
energy scales and that the high-energy modes are irrelevant, and can be integrated
out when describing low energy dynamics, is central to our understanding of
effective field theories. While the microscopic dynamics are prescribed in terms of
some fundamental degrees of freedom, if our interest is in computing observables
that probe the quantum dynamics at macrophysical scales, we can coarse-grain the
system and work with just the relevant modes at the scales of interest. Clearly,
this procedure involves some loss of information owing to the coarse-graining—a
natural question is how does one capture a useful measure of the number of degrees
of freedom at each length scale?

The process of coarse-graining microscopic degrees of freedom leading to a loss
of information a-priori sounds tailor-made for a discussion in quantum information
or entanglement terms. After all if our microscopic degrees of freedom were in
a pure quantum state, integrating some of them out would leave behind a density
matrix on the physically relevant macroscopic scales. However, the traditional
picture of effective QFTs eschews discussions of this low energy/high energy
entanglement and proceeds to directly construct effective actions (and typically
vacuum states thereof) for the low energy modes. Per se, this is because the
relation between the microscopic and the macrophysical variables is usually not
very simple. The entanglement patterns induced in the process of renormalization
are not necessarily spatially ordered and it is hard to see how to effectively use the
microscopic entanglement usefully. For example, while we would formulate the UV
dynamics of QCD in terms of quarks and gluons, the low energy states are built out
of the gauge-invariant mesons, baryons, and glueballs. It is unclear how to codify
the quark/gluon entanglement into the effective field theory.

It is however possible to track the entanglement between different momentum
modes if we restrict attention to perturbation theory. A recent attempt to discuss such
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ideas can be found in [202] in which the authors were inspired by the connection to
the renormalization group and potentially applications to holography.

Despite these seeming obstacles, there is an interesting interplay between
spatially-ordered entanglement and renormalization. This rather unexpected con-
nection has led to interesting insights about QFTs. While strictly speaking, much
of the discussion carries through without holographic input, and thus lies somewhat
outside the primary theme of our discussion, the connections with holography have
yielded further insights which make it interesting to report here. In any event, it
would be somewhat remiss not to record these developments, given their conceptual
elegance and import for quantum dynamics.

10.1 Central Charges and the Renormalization Group

To set the stage for our discussion, we should record some useful facts about QFTs
which undergo a renormalization group flow between two fixed points. The fixed
points of the flow are scale-invariant. In two dimensions, this scale invariance
suffices together with unitarity to guarantee conformal invariance [203], but the
higher-dimensional situation is more complex. Modulo certain subtleties, it is now
understood that unitarity plus scale invariance does imply conformal invariance in
four dimensions [204, 205].

Scale invariance in particular implies the trace of the energy-momentum tensor
vanishes, T�� D 0. However, in even-dimensional field theories, this statement
can be corrected by quantum anomalies leading to a non-vanishing trace when
we place the theory on a background curved spacetime with metric g�� . There are
two distinct contributions to the trace anomaly [206, 207], involving invariants built
from the Weyl tensor C���� of the background spacetime and the topological Euler
density. The coefficients of these geometric data are the central charges, and the
trace anomaly can be parameterized as:

h T�� i D
X

i

ci Ii � .�1/ d2 ad Ed (10.1.1)

The Euler density can be simply obtained as the top-form in d D 2n dimensions
using the Riemann-curvature 2-form EdD2n D 1

2n
��1�1�2�2 ����n�n R

�1�1 ^ R�1�1 ^
� � � ^ R�n�n , while the number of Weyl invariants depends on the dimensions.

In two and four-dimensional CFTs, the trace anomaly is typically parameter-
ized as

h T�� idD2 D � c

12
R ;

h T�� idD4 D c C���� C
���� � a

�
R���� R

���� � 4R�� R
�� C R2

�
(10.1.2)
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using the explicit expressions for E2 and E4 and the unique 4d Weyl invariant.
Note that despite the two-dimensional trace anomaly being purely of a-type, the
coefficient for historical reasons is denoted as the 2d central charge c.

While the central charges were defined above for the fixed points, there are
remarkable results which connect them to the renormalization group. In two
dimensions, Zamolodchikov [208] proved a c-theorem which elucidated some
remarkable features of QFTs. In particular, he showed the existence of a positive
definite function of couples C.gi/ which satisfies:

(i) monotonicity under RG flow, with C.gi/ monotone decreasing as a function of
scale.

(ii) fixed points of the flow are critical points of C.gi/, viz, d
dgi

C.gi/

ˇ̌
ˇ̌
giDg�

i

D 0.

(iii) the fixed point value of this function is the central charge C.g�
i / D c.

Zamolodchikov’s proof involved examination of the correlation functions of the
energy-momentum tensor.

Following Zamolodchikov’s seminal result, it was conjectured by Cardy [209]
that the analogous result in d D 4 should involve the a-type anomaly. The
c-type anomaly term was shown to not admit any monotonic property. After resist-
ing several attempts, the a-theorem was finally proved recently by Komargodski
and Schwimmer [210]. In this case, we only know that aUV > aIR holds; the
proof does not provide for the construction of an explicit interpolating function with
monotonicity properties. Beyond four dimensions very little is known to date.

There is an intermediate case of d D 3, where a-priori there is no obvious
candidate for a central charge. Odd-dimensional CFTs do not suffer from a trace
anomaly. In recent years, two distinct strands of investigation led to a remarkable
new theorem which is called the F-theorem. On the one hand, attempts to isolate
the analog of the a-anomaly using holographic techniques led [211, 44] to propose
a new three-dimensional measure of a central charge, while on the other, studies
of supersymmetric field theories led [45] to the statement of the F-theorem. We
will describe the F central charge momentarily, but the remarkable fact which ties
into our discussion is that the only known proof of this statement is using spatially-
ordered entanglement [47].

Firstly, let us make some observations about c and a-theorems which in d D 2

and d D 4 pick out the coefficient of the Euler density. One can easily isolate
this term from the general c-type anomaly contributions involving the Weyl tensor
by placing the theory on a conformally flat background. In d D 2, this is hardly
a restriction, as all manifolds are conformally flat, but in higher dimensions, we
simply choose a geometry that is in the conformal class of flat space. The simplest
such geometry for studying Euclidean field theories is the round sphere Sd.

Let us therefore define the sphere partition function ZSd which isolates this
contribution. For even-dimensional field theories, the sphere partition function will
pick out the a-type anomaly term directly. This is because the partition function will
exhibit a logarithmic UV divergence owing to the anomaly with the a central charge
setting the scale for this divergence. In odd dimensions however, due to the absence
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of the trace anomaly, we will simply obtain a number which we can take to be a
useful measure. The three-dimensional F-function is simply the logarithm of this
number, so we define following [45]

F3 D � logZS3 (10.1.3)

In fact, a useful quantity to consider appears to be the dimensionally-continued F.d/
[212]

QF.d/ D � sin

�
�d

2

�
logZSd D

(
.�1/ d�1

2 logZSd ; d D 2m C 1 ;

.�1/ d2 �
2
ad ; d D 2m ;

(10.1.4)

which interpolates between the various ad in even dimensions and generalizations
of Fd in odd dimensions.

10.2 Entropic c-Functions

The connection between trace anomalies and entanglement entropy has already
manifested itself in our discussion in Sect. 6.1. We noted there that the entanglement
entropy for spherical ball-shaped regions of a CFT picks out the ad anomaly
coefficient, cf., (6.1.56). This is due to the fact that the a-type anomaly can be
activated by any curved spacetime which is conformally flat, as is the case for the
hyperbolic cylinder. Recall that the entanglement entropy for a spherical domain
was given to be the thermal partition function on the hyperbolic cylinder for
conformally-invariant systems.

Our goal now is to demonstrate two beautiful results by Casini and Huerta
which employ the strong subadditivity inequality to prove the two-dimensional c-
theorem [43] and the three-dimensional F-theorem [47]. The latter result builds on
an interesting analysis of entanglement-based measure of degrees of freedom [46].

10.2.1 The c-Theorem in d D 2

Zamolodchikov’s c-theorem [208] proof utilized properties of the energy-
momentum tensor to construct the C-function. Casini and Huerta’s entanglement-
based proof simply utilizes the strong subadditivity inequality (2.4.7) and
observation that the entanglement entropy remains unchanged as we vary over
Cauchy slices insider a domain of dependence.

Consider the configuration illustrated in Fig. 10.1. We start out being very general
and first will derive an infinitesimal version of the strong subadditivity inequality.
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Fig. 10.1 The geometric configuration used to prove the two-dimensional c-theorem employing
the strong subadditivity inequality

Then we will specialize to homogeneous states which will allow us to construct an
entropic c-function as obtained in [43].

We take a region A to be a spatial interval of width ` on a surface of simultaneity
with time t

2
. This will serve as the primary region of interest. Instead of specifying

it by its endpoints A and B, we can equivalently prescribe this region by the
tips of its domain of dependence. We label these two points as C˙ and w.l.o.g
choose coordinates CC D .0; 0/ and C� D .t; x/ – hence A D �

t
2
; x � t

2

�
and

B D �
t
2
; x C t

2

�
.

We can now construct three further domains which are enclosed within this
causal diamond. We will do this by leaving the top-tip of the domain of dependence
CC fixed and move C� to three new locations C�

%
, C�

-
and C�

" , respectively.
The subscripts are indicative of the direction of motion: we move C� from its
original location along the light-cone directions to C�

%
and C�

-
, respectively, by an

infinitesimal amount x� to shift the left and right endpoints of A along the boundary
of DŒA�. This leads to two new regions A% D BC, and A- D AD. Finally,
translating C� to C�

" by an amount 2 x�, we can construct a new causal diamond,
for which A" D CD is a Cauchy surface.

We wish to apply strong subadditivity to the four regions in the form:

SA%
C SA-

� SA"
C SA ; (10.2.1)
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We now exploit the fact that the entanglement entropy is a wedge observable. It only
depends on the coordinates of the endpoints, which in turn can be expressed in terms
of the tips CC and fC�

%
;C�

-
;C�

" ;C
�g. For instance, SA D S.t; x/ and so on. Thus we

can write

S.t � x�; x � x�/C S.t � x�; x C x�/� S.t; x/� S.t � 2x�; x/ � 0 ; (10.2.2)

which when expanded out to second order in x� results in an infinitesimal form of
the strong subadditivity:

��@2t C @2x
�
S.t; x/ � 0: (10.2.3)

The l.h.s of this inequality has been called entanglement density in the literature
[213]; we will have further occasion to comment upon this in Chap. 13.

The discussion above is very general, but we can specialize to homogeneous
states preserving Lorentz symmetry as would be the case for the vacuum state of
any QFT. In such situations, the entanglement entropy of a region A depends only
on its length and not independently on the coordinates of its endpoints. Therefore
Lorentz invariance implies that SA D S.t; x/ D S.`/ with ` D p

t2 � x2. In this
case, we simply obtain from (10.2.3) the entropy inequality

` S00.`/C S0.`/ 	 0 : (10.2.4)

where we employ the shorthand S0.`/ � dS
d` .

From this expression, we can obtain an entropic c-function C.`/ which is
monotone decreasing as we increase the size of the region A. One simply picks

C.`/ D ` S0.`/ H) C0.`/ 	 0 : (10.2.5)

This candidate c-function C.`/ furthermore singles out the central charge at fixed
points of the renormalization group, for in the vacuum of a CFT, we have (3.1.7)

SCFT.`/ D c

3
log

`

�
H) CCFT .`/ D c

3
: (10.2.6)

We thence have a candidate c-function that captures the information of import
in the RG flow. This entropic c-function is insensitive to the details of the spectrum
of the field theory, owing to the fact that we are primarily isolating the universal
contribution of the entanglement entropy. We are using the region size, `, as a proxy
for the renormalization group scale; simply by asking how much entanglement there
is for regions of varying size, we seem to have a measure for how the coarse-graining
transformation serves to decrease the degrees of freedom.
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10.2.2 The F-Theorem in d D 3

The two-dimensional c-theorem was derived above by invoking the strong subad-
ditivity once. This was sufficient, since the choice of connected regions in d D 2

is rather limited; we get to pick an interval of some size. Unions and intersections
of intervals are also of the same form. Furthermore, the divergence structure of the
entanglement entropy is characterized by logarithmic UV cut-off dependence whose
coefficient captures the quantity which is monotone under the flow.

None of the above features extend trivially to higher dimensions. In d D 3,
we have a function’s worth of regions to choose from. Unions and intersections
of spatial domains do not end up having the same shape. The divergence structure
in entanglement entropy is a power law (linear). The latter is problematic because
for any set of non-overlapping regions, the information in the strong subadditivity
inequality is trivialized by the universal perimeter law divergence term. To obtain
something useful, we need to find a combination of regions where we can isolate
the contribution from the finite part of entanglement entropy. This motivated [47]
to look for a non-trivial combination of inequalities which could be put to use. A
more careful treatment of the UV divergences can be done by employing the mutual
information, as described in [214].

Consider for the moment a pair of regions A1 and A2, onto which we want to add
a third A3. Start with SA1 C SA2 C SA3 and iteratively employ strong subadditivity
as follows:

SA1 C SA2 C SA3 � SA1A2 C SA1\A2 C SA3

� SA1A2A3 C SA1A2\A3 C SA1\A2

� SA1A2A3 C S.A1A2\A3/.A1\A2/ C SA1\A2\A3

D SA1A2A3 C S[fijg.Ai\Aj/ C SA1\A2\A3

(10.2.7)

Iterating this for a discretuum of regions, we can obtain the generalized strong
subadditivity inequality

X

i

SAi � S[i Ai C S[fijg.Ai\Aj/ C S[fijkg.Ai\Aj\Ak/ C � � � C S\iAi : (10.2.8)

A notable feature of this inequality is that it is balanced. The number of terms on
both sides agree and the r.h.s. is expressed in order of inclusion of the regions. We
will eventually be interested in taking the continuum limit of this expression.

The idea is then to apply this generalized inequality to a series of regions that
would retain their shape. Clearly, this cannot work if we take all the regions of
interest to lie on a single time slice. Consider however the sequence of regions
illustrated in Fig. 10.2. The central region A D [i Ai is a circle on a constant time
slice and we have drawn its domain of dependence, which is a pair of lines, with
tips anchored at C˙. The regions Ai themselves are all obtained by translating the
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Fig. 10.2 The geometric
configuration used to prove
the three-dimensional
F-theorem employing the
strong subadditivity
inequality

+ = (0, 0)

−

−

−
↑

(t,x)

Ai

A

t − xε

(t − 2xε,x)

bottom tip C� upwards along the light-cone to the set of points labeled collectively
as which are taken to lie at t � x� . Each of the regions Ai

is a boosted circle within a causal domain with tips CC and C�
i and projects to the

central plane as an ellipse.
The union of intersections of these boosted circles [fijg.Ai\Aj/, [fijkg.Ai\Aj\

Ak/ will have a sawtooth structure at finite M. However, as M, these will provide
better and better approximation of a circle at a time t� t0 with 0 	 t0 	 2 x�. So each
term on the r.h.s. can be viewed as a circle of appropriate radius and moreover, in
the continuum limit, we can evaluate the two sides by an integral approximation.
We will again describe these circles by the tips of their respective domains of
dependence. Since we fix the future tip CC, we will be varying the bottom tip C�
upwards (along the dashed line in Fig. 10.2).

Consider first the l.h.s., which limits to the integral:

lim
M!1

1

M

MX

iD1

S.Ai/ 7! 1

2�

Z 2�

0

d� S .t � x�; x C x� sin.�/; y C x� cos.�//

D S.t; x; y/ � x� @tS.t; x; y/C x2�
4

�
@2x C @2y C 2@2t

�
S.t; x; y/C O.x3�/ :

(10.2.9)
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Here we have exploited the fact that SregAi D S.ti; xi; yi/ where the coordinates are
those of the past tip C�

i and that in the continuum limit, the points parameterize a
circle at t � x� .

To evaluate the r.h.s. of (10.2.8), we need to ascertain the measure for each circle.
This in turn can be easily induced from the uniform measure over the line running
from C� ! C�

" . Letting the union of the rotated circles A have radius R and their
complete intersection have radius r, we find a sequence of circles of radii �. Taking
care of the measure, we obtain the following expression for the r.h.s.

lim
M!1

1

M

�
S[i Ai C S[fijg.Ai\Aj/ C S[fijkg.Ai\Aj\Ak/ C � � � C S\iAi :

�

7! 1

�

Z R

r
d�

p
R r

�
p
.R � �/.� � r/

S.�; x; y/

D S.t; x; y/ � x� @tS.t; x; y/C x2�
4

�
3 @2t � 21

t
@t

�
C O.x2�/ :
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Combining (10.2.9) and (10.2.10), we obtain the inequality

r2S.t; x; y/C 2

t
@tS.t; x; y/ � 0 ; (10.2.11)

with r2 being the spatial Laplacian. This is the sought-for infinitesimal form of
strong subadditivity in d D 3 for the specific choice of regions.

For homogeneous states preserving the Lorentz symmetry, we can simplify
the expression using the fact that the entanglement entropy only depends on the
invariant radius of the circle S.t; x; y/ D S.` D p

t2 � x2 � y2/. This then leads to
the inequality derived in [47]

S00.`/ 	 0 : (10.2.12)

At a conformal fixed point d D 3, the expression for the entanglement entropy
owing to the linear UV divergence can be parameterized by the form:

S.`/ D ˛
`

�
� F3 : (10.2.13)

To pick out the UV regulated part, consider regularizing the entanglement entropy
[46] for circular domains of size ` via

C.`/ D ` S0.`/� S.`/ (10.2.14)
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This is UV finite by construction and agrees with F at the fixed point; it is clearly
monotone under increasing the region size leading to the desired F-theorem

C0.`/ D ` S00.`/ � 0 H) FIR
3 	 FUV

3 : (10.2.15)

10.2.3 d > 3 Dimensions

One might wonder if a natural generalization of the above strategy leads to
interesting constraints in higher dimensions. Clearly the iterated strong subadditivity
inequality (10.2.8) will continue to hold. Thus a natural question is whether we
can use the configuration of spherical regions contained with the casual diamond
generated by two spacetime points to some useful effect, mimicking the construction
sketched in Fig. 10.2.

This strategy unfortunately fails to provide any useful information for the
following reason. In d D 3, we have argued that the iterated intersections can be
treated as circles lying on the light-cone. Strictly speaking, for finite M, these circles
are composed on jagged null segments, which collapse to a spacelike curve in the
continuum. However, we also need to worry about the fact that the intersection
of two such circles results in sharp corners. It is well known that corners in @A
lead to additional subleading divergences in entanglement entropy. Now divergent
contributions are dangerous for the entropy inequalities: they clearly dominate and
in most cases reduce the import of the inequality. As an example, consider the
subadditivity inequality for two disjoint regions, which is overwhelmed by the area
law divergence.

The iterated strong subadditivity inequality (10.2.8) is organized such that the
area law divergent terms cancel between the two sides. However, if we encounter
subleading divergences in the intersections of the regions on the r.h.s (there being
none on the l.h.s.) then we face the danger of the inequality being rendered moot.
Fortunately, this does not happen in d D 3 because the corners are obtained by
intersecting two curves on a light-cone and the potential logarithmic divergence
arising from the corner conspires to vanish. This allows us to pick out the finite part
of the entanglement entropy, viz., the F contribution.

The situation in higher dimensions is not so fortuitous, for the regions are now
boosted spheres. The intersection locus of two such codimension-2 surfaces has
higher codimension corners, and this contribution does not vanish. As a result,
what one finds is that the r.h.s. of (10.2.8) is divergently smaller than the l.h.s.
Consequently, we can no longer access the universal terms in which the potential
anomaly terms reside and one does not obtain an entropic a-theorem in d D 4.

From an intuitive standpoint, it a bit strange that the proof of c=a-theorems are so
crucially dimension-dependent. One might naively have hoped for a more universal
understanding based on the picture of coarse-graining degrees of freedom. It is
interesting to contemplate whether there is some useful physical lesson one can
extract for the renormalization group based on these results.



Part IV
Quantum Gravity



Chapter 11
Prelude: Entanglement Builds Geometry

As we have remarked earlier, it is rather remarkable that an intrinsically quantum
concept such as entanglement has a very simple geometric dual. Part of the reason
of course is that for planar field theories with ceff 
 1, one essentially attains a
classical limit. Nevertheless, it is intriguing that there is a close connection between
geometric concepts in the bulk and quantum features of the boundary theory.
One therefore naturally wonders whether this fact can be leveraged to learn how
the holographic map between quantum field theories and gravitational dynamics
actually works.

The first attempt to articulate this philosophy was in the work of Swingle [12]
and Van Raamsdonk [13, 14]. Swingle’s main thesis was to draw analogy between
tensor networks and the geometry of spatial sections of AdS/CFT, which will be
discussed in the next section in more detail. To appreciate this, note that in the
AdS/CFT context, the radial direction into the bulk geometry is naturally viewed
as corresponding to the energy scale in the QFT [78]; probing deeper into the bulk
corresponds to probing the quantum state at lower and lower energy scales. One
can easily see this by examining the behaviour of extremal surfaces for regions of
increasing size, cf., Sect. 6.1. The idea is to relate this behaviour to that seen in
tensor network constructions for ground states of interacting many-body systems.
For lattice systems, one starts with a underlying UV state and proceeds to perform
a series of coarse-graining transformations which aim to remove short-range
entanglement and enable to one write down a suitable variational wavefunction for
the state. The structure of the network encodes pictorially the entanglement pattern
inherent in the state. This qualitative picture was supported by the behaviour of
entanglement entropy. In tensor networks, the amount of entanglement for a segment
of the lattice is captured by the minimum number of links of the network that one
has to disconnect, which is highly suggestive of the RT construction using minimal
surfaces.

© Springer International Publishing AG 2017
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Van Raamsdonk’s main idea was to address a very basic question about the
AdS/CFT correspondence: under what circumstances can a field theory state be
dual to a smooth semiclassical geometry? What is a-priori clear is that while the
correspondence gives a map from states in the Hilbert space of the boundary QFT to
that of the bulk string theory, not all states in the latter will have a nice realization in
terms of semiclassical spacetimes. Most of the states of the QFT will correspond to
highly stringy geometries wherein geometric concepts cease to be meaningful. The
new ingredient was to exploit entanglement as a crucial diagnostic for the emergence
of geometry. Let us take an extreme example: an unentangled product state of a
QFT. This is rather atypical state and the vanishing entanglement suggests that there
should be no connection between different parts of the state. As we mentioned in
Sect. 7.3, one example of such a direct product state is the boundary state [146].1

Consequently, such a state should not have a geometric dual.
A more clear example is provided by the thermofield double state (7.4.6)

described in Sect. 7.4. We review the construction again for convenience. Take two
copies of the QFT, which we call the left (L) and right (R) theories. We construct
the thermofield or Hartle-Hawking state by entangling energy eigenstates jrii 2 HR

and j lii 2 HL, respectively, weighted by a Boltzmann factor, viz.,

jTFDi D 1p
Z.ˇ/

X

i

e� 1
2 ˇ Ei jri lii :

Tracing out one of the copies leaves the other in a mixed thermal state, say

�R D 1

Z.ˇ/

X

i

e�ˇ Ei jrii h ri j ;

at inverse temperature ˇ. For small ˇ or equivalently large temperatures, the state
is highly entangled; indeed as ˇ ! 0, we obtain the maximally entangled state. At
any non-vanishing ˇ, we have the entanglement entropy being given as the thermal
entropy of a single theory. At low temperatures, ˇ 
 1, however we expect the
ground state to dominate.

As described in Sect. 6.1, the thermal state of a holographic field theory is dual to
a large Schwarzschild-AdS black hole in the high temperature limit, but, owing to
the Hawking-Page phase transition, becomes dual to the thermal AdS geometry at
low temperatures. The two phases are characterized by the entropy or, equivalently,
the free energy. In the high temperature limit, this scales with the number of degrees
of freedom ceff, while at low energies, it is O.1/.

We can equivalently phrase this observation in terms of the entanglement entropy
of the thermofield double state in HR ˝HL. Measuring the entanglement per degree
of freedom for the subsystem that is one of the copies of the two CFTs (say the

1It is helpful to view this state in terms of a lattice discretization of the field theory.
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right one), we note that SR D O.1/ for ˇ � 1, but SR D O.c�1
eff / for ˇ 
 1. In other

words, the low temperature theory is characterized by vanishing small entanglement
in the semiclassical limit ceff 
 1. If we look to the dual geometries, the low
temperature phase is described by the (Euclidean) thermal AdS solution, while the
high temperature phase is dual to the Schwarzschild-AdS black hole. One can view
the Lorentzian geometry for the thermal AdS as two copies of AdS spacetime, which
are disconnected at leading order in ceff to capture the two Hilbert spaces HL and
HR. The Lorentzian Schwarzschild-AdS solution also has two asymptotic regions
corresponding to the two copies, but these are connected in the spacetime via a
spatial Einstein-Rosen bridge.

In other words, a field theory state with macroscopic entanglement, as in the high
temperature regime, is characterized by a geometric dual where the entangled parties
are spatially connected. It is imperative to note that this spatial connection does not
imply temporal/causal connection. Indeed, in the Schwarzschild-AdS spacetime, the
two copies of the CFT are not in causal contact, as they lie separated by the black
hole horizon. The spatial Einstein-Rosen bridge which links HR and HL provides an
information conduit which encodes the entanglement pattern, but no communication
is possible across it. In other words, the ER bridge is a non-traversable wormhole.
On the contrary, in the absence of macroscopic entanglement, there is no spatial
connection between the two Hilbert spaces, as is clear from the two disjoint copies
of AdS being the dual spacetime in the low temperature limit.

The above observation can be codified into an elegant slogan “entanglement
builds bridges”. The presence of sufficient entanglement is indicative of spatial
connectivity in the dual holographic theory. This idea underlies the structures seen
in the tensor network approach to constructing ground states as mentioned. Note
that the tensor network constructions per se are not well suited for obtaining
wavefunctions of highly excited states, while the geometry construction in terms
of the gravitational description does not suffer from this handicap.

The essential idea of the connection between geometry and entanglement and
the prototype example provided by the EPR/Bell-like entangled thermofield double
state and its dual avatar in the form of the Einstein-Rosen bridge prompted
Maldacena and Susskind to argue for a more general relation, dubbed “ER =
EPR”. The idea is that any quantum state with Bell-type bipartite entanglement
is naturally viewed in terms of a spatial connection between the entangled parties.
When the amount of entanglement is minuscule, one may only have a quantum
wormhole connecting the pairs. As the entanglement builds up to macroscopic
amounts, these quantum structures coalesce into correspondingly larger spatial
entities which end up creating new geometric connections in the dual spacetime.
This is a highly intriguing picture that suggests a deep connection between the
nature of entanglement and the origin of geometry. A lot of effort has been devoted
in the recent years to understanding this connection better and much remains to be
understood. The rest of this chapter focuses on the salient results to date and outlines
some important issues that deserve further scrutiny.



Chapter 12
Entanglement at Large Central Charge

Much of our analysis thus far has been either purely in the realm of field theory or
in holographic systems in which we exploit the gravitational description to compute
the physical observables. A general question one might ask is what are the necessary
and sufficient conditions for holography to work? Could we recover universal results
in a class of field theories that are well approximated by holographic computations?

For the present, we will adopt a set of criteria that are known to be sufficient for
a QFT to have a holographic dual and compute entanglement entropy directly using
field theoretic methods to contrast with the geometric computations. Our aim is to
build up some intuition to address the general set of questions, as raised above, with
regard to the holographic map. We will come back to address these general issues
in the context of our discussion relating gravity and entanglement in Chap. 13.

Let us first spell out the set of criteria we are after, which we have already
foreshadowed in Sect. 4.1. In order for a field theory to be holographic, it must admit
a planar or large central charge limit ceff ! 1. This by itself does not suffice; the
theory also needs to have a sparse spectrum of light states with the low-lying spin
s 	 2 states being parametrically lighter than their s > 2 counterparts [215]. We
will focus on the case of CFT2 for much of the discussion below, where we can be a
bit more precise. It was described in [71] that such a holographic CFT2, in addition
to admitting a sensible c ! 1 limit, must also have a large gap in the spectrum of
its Virasoro primaries	gap � O.c/ and the low-lying spectrum be constrained from
growing too fast. We will adopt these criteria and see what we can learn about the
entanglement entropy in such theories.
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12.1 Universality Features of CFT Entanglement

Before getting into the specifics of the large central charge CFTs in d D 2, let us
take a moment to review a series of computations which, whilst naively appearing to
be holographic, are not quite what we are after. This will also be helpful in clarifying
some of the results later, setting the stage for our abstract discussion in Chap. 13.

First, recall that if we were to consider the entanglement entropy of any CFT2 in
its vacuum state on the plane/cylinder, or the thermal state in non-compact space,
we would obtain the celebrated results described in Chap. 3 as quoted in (3.1.6),
(3.1.7) and (3.1.8), respectively. In each of these three cases, we notice that the
answer depends on the central charge in a rather simple fashion. The results are
furthermore universal irrespective of the details of the theory. For instance, the
spectral information about the field theory data is completely missing. Indeed, as
explained earlier, these results simply capture a rather coarse feature of the CFT, and
are not a good diagnostic of whether the theory is holographic or not. They follow
pretty much immediately, as a consequence of the symmetry preserved by the states,
and the subregions chosen. They therefore fail to stand as a good test of holography.
Indeed, one reproduces precisely the same expressions from holographic modeling
by taking the dual to be Einstein gravity in AdS3, for the very same reasons of
symmetry.

One might imagine the situation in higher dimensions to be rather different, no
matter what state we pick or which region we choose. However, there exist special
situations in which once again one obtains universal results independent of the
details of the field theory. This is well exemplified by the behaviour of entanglement
entropy for spherical ball-shaped domains A in the vacuum state a CFTd. We have
described how one may relate the density matrix in this case to the thermal density
matrix using a conformal map in Sect. 6.1. From these computations, we can see, for
example, from (6.1.56) that the entanglement entropy SA is simply characterized
by the a central charge (10.1.1) of the CFTd. We can write the answer a bit more
suggestively as [83]:

Svac
A D �

�
d
2

�

� �
�
d�1
2

� !d�2 ad
Vol.H/d�1
`d�1

AdS

: (12.1.1)

Thus, despite appearances, the vacuum entanglement for ball-shaped regions also
only depends on a single number ad.

Not only is the vacuum entanglement SA universal, but it turns out even
perturbations of the vacuum state end up giving universal results. Consider the
following question, which was recently addressed quite nicely in [216]. Let us say
that we have a CFTd in its vacuum state. We deform the theory by turning on an
infinitesimal source of strength Jı for a relevant scalar operator O	 of dimension
d
2

	 	 	 d. Generically, such a deformation will induce an energy-momentum
tensor of O.J2ı /; it will also change the entanglement entropy. The change 	SA
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was computed in [46] using holographic modeling. They found a rather simple result
to leading order in the perturbation engendered by the source:

	SA D �J2ı R
2.d�	/ �

dC1
2 .d �	/�

�
1C d

2
�	

�

2 �
�
3
2

C d �	
� C O.J3ı / (12.1.2)

Remarkably, this result also holds in any CFTd; this was explicitly demonstrated
in conformal perturbation theory by [216]! The analysis carried out therein was
to compute this quantity directly in field theory. Using the replica method and
exploiting the known modular Hamiltonian for the ball-shaped regions in (6.1.48),
the result for ıSA can be expressed as a combination of correlation functions
hO	O	 i and h T��O	O	 i. The amazing fact was that the computation of these
correlators was most efficiently organized in terms of an auxiliary gravitational
problem in a Einstein-scalar theory. This is identical to the setup considered in
[46], though now one is working in a regime in which the CFT is not necessarily
holographic, for instance, ceff � O.1/.

Thus despite our naive expectations, if we focus on a class of regions and
states in which the entanglement features are universal, then we fail to distinguish
holographic theories from non-holographic ones. The gravitational analog of these
results was explained in [217]. In particular, it was shown there that the data
we are considering is incapable of distinguishing between various gravitational
interactions. It is always possible to again conjure up an auxiliary Einstein theory
which reproduces all of this data. Notwithstanding these observations, a lot of
information has been extracted from the spherical entangling regions in the context
of holography, as we review in Chap. 13.

These examples illustrate that under certain circumstances, the entanglement
entropy may carry little information about the QFT. The auxiliary gravitational
problem we write down is purely kinematic, in that it is engineered to do a field
theory computation. While it may appear that in some practical applications the
AdS/CFT correspondence also works the same way, this similarity is illusory. The
profound conceptual difference is that in the latter case, gravity is dynamical.

These examples serve to caution us in the diagnosis of potential holographic
implications. We need to choose appropriate field theory data for purposes of
estimating whether the quantity simplifies in the holographic limit to reveal
signatures of geometry. Results that appear to hold for an arbitrary central charge
generically ought to be viewed as kinematic coincidences. While they may provide
useful starting points for a discussion, owing to their simplicity, it is important to
explore other observables that are sensitive to the dynamical aspects of holography.

Thus when we discuss CFT2 entanglement entropy, we would have to conjure
up alternate scenarios from single-interval entanglement. We can continue to work
with the vacuum state, provided we generalize to pick A to be a disjoint union of
multiple intervals. Likewise in higher dimensions, we should be focusing on regions
other than the spherical domains. In the rest of this chapter, we will see how to obtain
answers for large c CFT2s and its implications for the holographic map.
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12.2 CFT2 at Large c

To set the stage for our analysis of large central charge CFTs in two dimensions
and their putative AdS duals, we need to review some basic facts about conformal
field theory correlation functions. The basic data for a CFTd as mentioned in
Chap. 3 are the scaling dimensions of the primaries and the OPE coefficients. The
conformal symmetry fixes the functional form of two- and three-point functions,
leaving these as the only parameters. Higher point functions may be obtained by
using the operator product expansion (OPE) as we now review.

Consider a four-point function of scalar primary operators Oi.xi/ of dimensions
	i with i D 1; 2; 3; 4 in CFTd. Using the conformal symmetry, we can simplify to a
single function of the cross-ratios. To wit, in terms of

hO1.x1/O2.x2/O3.x3/O4.x4/ i D
�
x224
x214

� 1
2 	12

�
x214
x213

� 1
2 	34 g.u; v/

.x212/
1
2 .	1C	2/ .x234/

1
2 .	3C	4/

11.3 (12.2.1)

in which	ij D 	i �	j and likewise xij D xi �xj. The function g.u; v/ is a function
of the two independent conformal cross-ratios of the four-points:

u � z Nz D x212 x
2
34

x213 x
2
24

; v � .1 � z/ .1 � Nz/ D x214 x
2
23

x213 x
2
24

(12.2.2)

The cross-rations .u; v/ are independent in Lorentz signature, but in Euclidean
signature, z and Nz are complex conjugates of each other. The simple way to think
about these is to use the conformal symmetry to fix three insertion points, say
x1 D 0, x3 D 1 and x4 D 1. Then z and Nz are simply complex coordinates on
the two-plane common to the four operators. We have written the decomposition in
the s-channel assuming the operators O1 and O2 are proximate, which is valid as
long as u � 1 (equivalently z ! 0). Analogous expressions can be written down
for other channels by exchanging the operators to which we apply the OPE first, as
depicted in Fig. 12.1.

∑
p

O1 O4

O2 O3

Op
=

∑
r

O1

O3O2

O4

Or

Fig. 12.1 The expression of a four-point function in terms of the summation over conformal
blocks. There are two potential channels for the expansion; on the left is the s-channel for z ! 0,
while on the right is the t-channel with z ! 1. Crossing symmetry relates the two expressions
using associativity of the OPE
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The key point is that using the OPE, the function g.u; v/ may be expanded into
conformal blocks:

g.u; v/ D
X

Op

C12p Cp34 G	p;sp.u; v/ (12.2.3)

where Op are primary operators of dimension 	p and spin sp. This allows us to
write the correlator in terms of the OPE coefficients as a sum over conformal partial
waves by decomposing the block:

hO1.x1/O2.x2/O3.x3/O4.x4/ i D
X

Op

C12p Cp34W	p;sp.xi/

W	;s.xi/ D
�
x224
x214

� 1
2	12

�
x214
x213

� 1
2	34 G	;s.u; v/

.x212/
1
2 .	1C	2/ .x234/

1
2 .	3C	4/

(12.2.4)

These conformal partial waves and the blocks can be viewed as an efficient basis
of functions that are adapted to the conformal group SO.d; 2/, analogous to the
spherical harmonics for rotational symmetry.

We will primarily be interested in d D 2, in which the conformal symmetry
is enhanced to the full Virasoro symmetry. In this case, we can employ the fact
that the Hilbert space of the theory decomposes into a set of primary states j Opi
related to their operator counterparts Op via the state operator correspondence and
their Virasoro descendants, viz., operators obtained by acting with L�n and QL�n with
n � 1. This allows us to write the four-point function in terms of Virasoro conformal
blocks, such that

g.u; v/ D
X

h;Nh
Ph;Nh Vh;Nh.u; v/ (12.2.5)

with Ph;Nh being the block coefficients which are theory-dependent, and Vh;Nh.u; v/
the Virasoro blocks built from the representation theory. As usual,	i D hi C Nhi and
si D jhi � Nhij.

Alternately we may write an expression setting Vh;Nh.u; v/ D u	�sFh;Nh.u; v/ that
makes explicit the OPE origins:

hO1.x1/O2.x2/O3.x3/O4.x4/ idD2 D
X

p

C12p Cp34 F.hi; hp; cI z/ NF.Nhi; Nhp; cI Nz/
(12.2.6)

Let us now specify to a particular case in which the operators are from widely
different regimes in the spectrum. We pick operators OL which lie in the low-lying
spectrum, 	L � O.1/, and OH which are heavy, 	H � O.c/. We will take them
to be spinless, so that following the above logic, we may express the four-point
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function as

hOL.x1/OL.x2/OH.x3/OH.x4/ i D .z Nz/2	L

.x212/
	L .x234/

	H
G.z; Nz/ ; (12.2.7)

where z D x12x34
x13x24

and Nz D Nx12Nx34Nx13Nx34 . In writing the expression, we have performed

the block expansion in the s-channel where we assumed that z 	 1
2
, which implies

that the light and heavy operators are closer to each other. In general, the Virasoro
conformal blocks do not admit a closed form expression (global conformal blocks
do).

Let us now motivate the concept of vacuum block dominance, which we will use
to simplify the computations. The block decomposition of the correlation function
suggests that we fuse a pair of operators, say O1 and O2, with each other into a set
Op, which then mediates the interaction with O3 and O4. Per se, this involves a scan
over all intermediate states that contribute. If we can truncate the contribution of the
intermediate operators Op, then we may have some hope of making the computation
tractable. This is not generically achieved, but there are some special features of the
planar limit which allow for this possibility.

First of all, the very existence of the planar limit hinges on the OPE coefficients
simplifying to admit a large c factorization; we require that Cijp � O. 1c /. In other
words, factorization implies that higher point functions can be obtained through
Wick contractions. This by itself is not sufficient to allow the full simplification
we need, but suppose further that there are very few low-lying states. Then one
might imagine that the number of channels for the OPE is rather restricted. In fact,
in the extreme limit, we may go so far as to suggest that the only channel that
contributes corresponds to the lightest operator exchange. This clearly has to be the
identity channel, which includes the identity operator I and its descendants (which in
the Virasoro block includes the energy-momentum tensor). Since the identity is the
lightest primary having the smallest conformal dimension h D Nh D 0, one expects
it to give the leading contribution to the correlator. The vacuum block dominance
assumes this to hold and proceeds to derive the consequences therefrom.

We now assume that the identity block is the only relevant one. Furthermore, we
concentrate on computing correlation functions in the planar limit (c ! 1) with
the choice of external operators OL and OH satisfying

1 � 	L � c ; and
	H

c
fixed : (12.2.8)

In this limit, one can obtain an analytic expression for the Virasoro identity block in
the small u limit [218, 219]:

V0;0.u; v/
u!0� .˛H/

	L v� 1
2 	L.1�˛H/

�
1 � v
1 � v˛H

�	L

; ˛H �
r
1 � 12	H

c
(12.2.9)
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This vacuum block dominance has been used in recent years to derive many
properties of two-dimensional CFTs that are shared by holographic theories in
AdS3. We now proceed to review some of the applications of this with a primary
view towards entanglement entropy.

12.2.1 Entanglement Phase Transitions

One important feature that is exhibited by the RT/HRT prescriptions is the existence
of entanglement phase transitions. Recall that in d D 2, if we consider multiple
intervals, then there are potentially multiple extremal surfaces available, all satisfy-
ing the homology constraint, see, for example, Fig. 6.2. Of these we are required to
take the surface with globally minimal area in the correct homology class, which
then leads to exchange of dominance among these available extremal surfaces. This
was one of the main arguments put forth in [62]. It was further demonstrated there
that such behaviour is characteristic of theories with large central charge.

This idea was made explicit in a beautiful calculation by Tom Hartman that
initiated the study of vacuum block dominance in large c CFTs [121]. We will now
review this result to illustrate how the large c approximations work, making it clear
that the answer is essentially holographic. In fact, there is more to say regarding the
connection to gravity, which we shall explain at the end of the discussion.

Consider the case of two intervals A D A1 [ A2, as depicted in Fig. 6.2, for
simplicity. We let A1 D Œx1; x2� and A2 D Œx3; x4�. To compute the qth Rényi
entanglement entropy in the vacuum state, we need to construct the branched cover
geometry Bq which will end up being a genus .q � 1/ Riemann surface, as each
gluing will generate a handle. The computation of the partition function Zq on
this surface is however equivalent to computing the four-point function of twist
operators inserted at the endpoints of A. So we need to compute the four-point
function h Tq.x1/ NTq.x2/Tq.x3/ NTq.x4/ i. The idea is to evaluate this correlation in the
large c limit taking into account the conformal dimension of the twist operators
scales like the central charge.

Now while all the operators are the same, we need to exercise care in employing
the vacuum dominance to evaluate these correlation functions. In drawing Fig. 12.1,
we assumed that we were expanding in the s-channel, but that is only valid for
the cross-ration z ! 0. On the contrary, when z ! 1, we should be expanding
in the alternate channel. The choice of z ! 0 and z ! 1 refers to behaviour of
the cross-ratio (12.2.2), but it is equally intuitive pictorially. In the z ! 0 limit,
x21 ! 0, implying that A1 and A2 are well separated from each other. On the
other hand, when z ! 1, we see that the right endpoint of A1 is proximate to the
left endpoint of A2, i.e., the intervals are closer to each other. This is precisely the
situation illustrated in Fig. 6.2. In the CFT, the choice we get to make is which two
operators we choose to first perform the OPE.
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The two choices amount to the identifications of the twist operators into our
choice of two light and two heavy operators for purposes of employing (12.2.9).
These correspond to:

.i/: Tq.x1/; NTq.x2/; Tq.x3/; NTq.x4// D .OL;OL;OH ;OH/ ;

.ii/: .Tq.x1/; NTq.x2/; Tq.x3/; NTq.x4// D .OL;OH ;OH ;OL/ :
(12.2.10)

Now we can apply the vacuum dominance and compute the correlator. In both cases,
we keep only the identity in the sum (12.2.6) and take the q ! 1 limit to obtain
the von Neumann entropy. This effectively amounts to setting .z Nz/2	LG.z; Nz/ D 1

in (12.2.7). One can convince onself using the explicit expression (12.2.9) for the
identity block. We are however left with the kinematical factor in the denominator
of (12.2.7) to contend with, and this contributes differently owing to our choice of
OPE expansion. The entire answer for the entanglement entropy comes from this
piece :

.i/: SA D c

3
log

jx2 � x1j
�

C c

3
log

jx4 � x3j
�

; z <
1

2
;

.ii/: SA D c

3
log

jx4 � x1j
�

C c

3
log

jx3 � x2j
�

; z >
1

2
:

(12.2.11)

The choice of which surface to pick is determined by the configuration that
dominates the saddle point approximation using the vacuum block to determine
the four-point function of the twist operators. This unsurprisingly is given by the
minimum of SA in the two cases described in (12.2.11). As indicated above, the
configuration (i) dominates for z < 1

2
, while (ii) dominates for z > 1

2
. Essentially

we can view the vacuum block approximation as an effective saddle point estimate
with c playing the role of the saddle point parameter.

One can readily appreciate the result: this corresponds to the two obvious ways to
connect the endpoints of A consistent with the homology requirement. The lengths
of geodesics in AdS3 connecting two boundary points being simply log `

�
for a

spatial interval of proper size `. Moreover we see that the two configurations are
precisely the ones admissible by the homology requirement. Thus, assuming large c
vacuum dominance, we derived the result depicted in Fig. 6.2. We see a sharp phase
transition at z D 1

2
which is only possible because of the planar limit c ! 1.

While it seems remarkable that the large c result so simply reproduces the
holographic answer, there is in fact a greater level of concordance than our brief
discussion indicates. Paralleling the development of the computation in CFT by
Hartman in [121] was an analogous development in the gravitational side. Faulkner
[220] attacked the same problem of computing entanglement Rényi entropies in
CFT2 though now using the holographic map to AdS3. The idea was to essentially
obtain the partition function on the branched cover geometry Bq, by a semiclassical
approximation of the quantum gravity path integral in AdS3. The computations can
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be done in Euclidean signature since we are in the vacuum state. Now, given a
genus g Riemann surface Bq one can construct a handlebody geometry, a Euclidean
3-manifold which admits a constant negatively curved metric, obtained simply by
filling in g mutually commuting cycles (in the homotopy sense) of the non-trivial
2g cycles. Furthermore, using known results in Liouville theory, one can compute
the action for these handlebodies; we refer the reader to the original paper and
references therein for how this can be done (cf., also [221]). Now the choice of
cycles that one gets to fill is in one-to-one correspondence with the choice of OPE
expansions at our disposal in the computation of the twist operator correlation
functions. The assumption of vacuum block dominance is tantamount to singling out
g of the 2g cycles and requiring that only the identity and its descendants propagate
along that cycle. This leads to a very satisfying picture of the connection between
the large c CFTs and gravitational theories in AdS3, and makes extremely explicit
the necessity of the approximations chosen above.

12.2.2 Excited State Entanglement

We now turn to understanding how we can use the vacuum block dominance to
compute the entanglement entropy for a highly excited state in a large c CFT2. For
now, we will assume that the state is spatially homogeneous, and revert to the case
with spatial inhomogeneity in the sequel. Say that our excited state, j hi was created
by a heavy (spinless) primary operator Oh of conformal dimension	h � O.c/,

j hi D lim
z!0

z	hOh.z/ j0i : (12.2.12)

We would like to compute the entanglement entropy for this excited state, taking
A to be a single connected interval on the cylinder. We can use the replica method to
replicate the state j hi q-fold, and then obtain the qth Rényi entropy by computing
the correlation function of the twist operators in this replicated state. The replica
construction involves insertion of the Zq twist operators Tq at the entangling points

@A. These have conformal dimension	q D c
12

�
q � 1

q

�
. Thus we need to compute

the correlation function of twist operators in the replicated state j iq. This seems
formidable, since all operators have conformal dimension of order c.

However, for computing the entanglement entropy in the limit q ! 1, we can
make the following approximation. We note that the twist operator Tq starts to get
light since .q � 1/ � 1 in this limit, so we can choose it to be the light operator
OL and take 	L D 	q. We further let the heavy operator be the one that creates
the state ; this involves the qth power of Oh: OH D .Oh/

q, so 	H D q	h. Working
in this limit, we need only compute the four-point function of these operators. We
insert the twist operator at 1 and z, while we put the heavy operator at 0 and 1,
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corresponding to the four-point function

hOH.0/OL.z/OL.1/OH.1/ i ; OH D .Oh/
q ; OL D Tq ; q ! 1C

(12.2.13)

in which we have chosen to regard the operator creating the state to act at 0 and 1
and suitably picked coordinates to bring the endpoints of A to z and 1, respectively.

We can now use the vacuum block dominance since (12.2.8) is satisfied. Using
(12.2.9), we can obtain the following expression for the von Neumann entropy:

SA D c

6
log

� j1 � z˛h j2 jzj1�˛h
˛2h �

�
; ˛h D

r
1 � 12	h

c
(12.2.14)

where � is the UV cut off as usual. Performing the conformal map from the plane
to the cylinder using the exponential map z D eiw, we find from (12.2.14) the result
for the entanglement entropy for a region of size 2a on a circle of size `S1

SA D c

3
log

�
2 `S1

� � ˛h

sin

�
� ˛h

a

`1S

��
: (12.2.15)

Since the state in question j hi is a pure state, the above is valid only for regions
that are small. For larger regions, we need to replace 2a ! `S1 � 2a.

Let us contrast this with the expression quoted earlier (3.1.7) for a finite region
of length. What the above expression (12.2.15) suggests is that we are measuring
a rescaled length for the spatial circle `S1 that is effectively rescaled by ˛h

2
. This

is indeed what we expect from gravity: an excited state in AdS3, which is heavy
enough to backreact and modify the spacetime, but light enough not to form a BTZ
black hole, is a conical defect. These geometries are created by a massive point
particle in three dimensions. They are quotients of AdS3 by a discrete group, whose
action is precisely to orbifold of the circle, thereby introducing a conical defect with
deficit angle 2�.1� ˛h/.

One can see this explicitly from the metrics (4.2.11) where we set rC D `AdS.1�
�/ with � 2 .0; 1/ to obtain (see also the discussion in Sect. 8.4.1)

ds2 D �
�

r2

`2AdS

C 1 � �

�
dt2 C dr2�

r2

`2AdS
C 1� �

� C r2 d'2 (12.2.16)

We can absorb the factor of 1 � � by working in rescaled radial coordinate Qr D
rp
1�� . This will bring the first two metric functions to be of the global AdS3 at the

expense of modifying the angular component of the metric. Examining the latter,
we learn that we need to quotient the circle parameterized by ' accordingly, which
results in the orbifold. The holographic computation of the minimal surface length
will reproduce (12.2.15) with the identification � D 12 	h

c .
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In the computation above, we took 	h < c
12

. However, we can analytically
continue the answer (12.2.15) when 	h >

c
12

simply by replacing ˛h ! Th where
Th is an effective temperature and write

SA D c

3
log

�
1

� � Th
sinh .2� a Th/

�
; Th D 1

2� `S1

r
12	h

c
� 1 :

(12.2.17)

This is the form of the entanglement entropy in a thermal state at temperature Th,
cf., (3.1.8). It also corresponds to the answer we get by a holographic computation
in the BTZ background (6.1.34) (the result is quoted for small regions relative to the
circle size). What this reveals is that due to large degeneracy of states at high energy
	h >

c
24

, the primary state j hi is indistinguishable from a typical state at the same
energy. The latter, by statistical reasoning, is well approximated by a thermal state,
which in the dual picture is the BTZ black hole.

These results, which were discussed in [218, 178, 222], illustrate that the vacuum
block dominance is the operative mechanism that allows the CFT computation
to reproduce the holographic answer. To some extent, these examples are still
somewhat governed by the symmetry, but less trivially so than the examples
discussed in Sect. 12.1.

12.2.3 Local Quenches

As another illustration of the large c computations, we will exhibit results for
locally-excited states j‰i as formulated in Sect. 8.2 and defined by the state (8.2.1).
The entanglement entropy for the excited state j ‰i will be exhibited in a manner
very similar to the computation of the excited state entanglement described above.
We review the results derived in [178], adapting them to the setup we laid out in
Sect. 8.2.

To evaluate the entanglement entropy in the locally excited state, we take the
twist operator to be the light operator OL D Tq and the heavy operator to be
again the qth power of the operator inducing the excitation OH D O. Thus

	L D c
12

�
q � 1

q

�
and 	H D q	O. We need to evaluate the correlation function

h Tq.w2/ NTq.w3/Oq.w1/Oq.w4/ i, where we choose

w1 D �w4 D �i �� ; w2 D x1 C i t ; w3 D x2 C i t : (12.2.18)
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The notation is as before, with �� being a UV regulator of the disturbance, cf.,
(8.2.1) and t D i tE the Lorentzian time coordinate.

Adopting the conformal block decomposition (12.2.7) and thence assuming
vacuum dominance, we end up with

Tr .�Aq/ D hOq.w1/OOq.w4/ Tq.w2/ NTq.w3/ i
hO.w1/O.w4/ iq D x�2 q	O

21 .z Nz/2	O G.z; Nz/
(12.2.19)

Taking the q ! 1 limit, we obtain the entanglement entropy [178]

SA D c

6
log

�
.x2 � x1/

2 j1 � .1� z/˛O j2j1 � zj1�˛O
˛2Ojzj2�2�

�
; ˛O D

r
1 � 12	O

c
(12.2.20)

When �� is infinitesimally small, the cross-ratio behaves as

z D � 2i .x2 � x1/

.x1 C t/ .x2 C t/
�� C O.�2�/ ;

Nz D 2i .x2 � x1/

.x1 � t/ .x2 � t/
�� C O.�2�/ :

(12.2.21)

To evaluate the final answer as suggested by (12.2.20), we need to be careful
about the phase information in the cross-ratio 1� z and 1� Nz. In the early time limit,
0 < t < x1, as well as in the late time region t > x2, we find .1 � z; 1 � Nz/ ! .1; 1/

in the �� D 0 limit. Therefore we find that the entanglement entropy for these times
reduces to the ground state entropy and thus

	SA D 0 ; for 0 < t < x1 and t > x2 : (12.2.22)

This trivial behavior is indeed what is predicted by the causal propagations of
entangled particles, reproducing earlier results.

On the other hand, in the intermediate region x1 < t < x2, we have .1�z; 1�Nz/ !
.1; e2� i/. Using this expression, we find we obtain the time-dependent entanglement
entropy:

SA D c

6
log

�
.x2 � x1/ .t � x1/ .x2 � t/

�2 ��
sin.�˛O/

˛O

�
: (12.2.23)
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If we choose x2 � x1 much larger than t and focus on the late time region t 
 ��,
we find

	SA ' c

6
log

t

��
C c

6
log

sin.�˛O/

˛O
: (12.2.24)

This perfectly reproduces the previous holographic result (8.4.13) by identifying
�� D w� and ˛O D p

1 � �. In other words, the quench, as for the excited
state entanglement entropy, involves choosing a point particle in AdS3 with mass
parameter set by � D 12	O

c , consistent with our expectations.



Chapter 13
Geometry from Entanglement

A-priori one can make the following observation: Let us say we are given the
entanglement entropies of a collection of regions in the boundary field theory.
Assuming that this data arises from areas of surfaces in the gravitational dual, one
can ask what is the corresponding geometry? In particular, we can seek the metric
of the bulk spacetime, which leads to the given entanglement data. To appreciate
the question better, note that spatial bipartitioning of a field theory Cauchy slice is
described by two functions worth of data in d dimensions; the entangling surface is a
codimension-2 surface. We are assuming that we have a collection of entanglement
entropies for various choices of regionsA, which is far more data than that necessary
to describe a metric in .dC1/-dimensional asymptotically AdS spacetime. After all,
the latter is completely specified by the .dC1/.dC2/

2
functions of d-variables, while we

have data indexed by two functions of d-variables. This is a vastly overdetermined
problem.

This suggests that not all field theory entanglement patterns are geometry. To
be sure, for any state of a holographic field theory, we may obtain the entan-
glement entropy of an arbitrary region. However, requiring that these be attained
as a geometric construct puts further restrictions on the entanglement realized in
holographic field theories. The question is not only which patterns are amenable to
being obtained from geometric functionals like the area of a codimension-2 bulk
surface, but also whether the field theory data is consistent with the semiclassical
picture for a geometric description. For instance:

• Phase transitions of entanglement entropy which occur at large ceff, e.g., for
thermal states or disjoint regions should be captured by the entanglement
structure.

• General holographic entanglement inequalities discussed in Sect. 6.3 should
be respected. Amongst these, in particular, we can require that the mutual
information is monogamous, I3 < 0, in the holographic setting.
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These criteria are not satisfied by generic states in the Hilbert space of a QFT.
They only holdjust in special limits of parameter space (e.g., strong coupling, planar
limit), and even then only for certain subset of states does one expect that there is
a nice geometric prescription. We will refer to such states in the field theory as
states in the code subspace. The nomenclature will become clear when we describe
recent attempts to understand the holographic map in the language of quantum error
correction. However, we can now give a qualitative picture of the code subspace
which should be useful for building intuition for the discussion that follows.

The Code Subspace States The vacuum state j 0i of a CFTd on ESUd is the only
state invariant under the full SO.d; 2/ conformal group in d > 2 (or the Virasoro
symmetry in d D 2). For this state, symmetries dictate the dual geometry to be the
global AdSdC1 spacetime. We trust the semiclassical physics on this background to
describe accurately the dynamics of the CFT as long as `AdS 
 `s and `AdS 
 `P.
Translating to CFT data, as long as ceff 
 1 and � 
 1, the entanglement structure
inherent in the vacuum for arbitrary regions A is captured accurately by geometry.
We can make similar observations should we consider the field theory on Minkowski
spacetime instead.

We can also consider neighbouring states which are obtained by acting on the
vacuum with a bounded number of creation operators, Oi, for i D 1; 2; � � � k, as
long as k � ceff. These excitations will add some excess energy but the total
amount of energy is bounded by the conformal dimensions 	 D Pk

iD1 	k. As
long as 	i � ceff, the backreaction on the dual spacetime geometry is vanishingly
small. This follows from our earlier observation that the bulk gravity theory has
G.dC1/

N � c�1
eff . Since the strength of gravity is weak, the backreaction is controlled

by G.dC1/
N 	 � 1, by assumption. What this means is that for such states, we can

approximate the bulk dual in terms of a few particle excitations on an undeformed
AdSdC1 background. So by working perturbatively in G.dC1/

N , we can capture the
effects of the local excitations atop the vacuum. The code subspace around the
vacuum can thus be defined as the set of these low-lying states of the Hilbert space.

We can similarly start with an excited state, which happens to admit a geometric
dual with a non-trivial dual geometry. For the former to pertain, we need to ensure
that the energy in the state is macroscopically larger than in the vacuum, and thus
require that the state has O.ceff/ energy. Such geometric states are not generic in
the Hilbert space, since the generic high energy state would be expected to behave
analogously to a black hole geometry, thanks to microcanonical typicality. Given
such a state, we can further consider a few particle excitations atop such states, to
define the code subspace around this high energy state.

States in the code subspace about a particular geometry have exponentially small
overlap O.e�ceff/ with the states about any other geometry. In other words, insofar
as the space of geometric states is concerned, we can decompose them into effective
superselection sectors in the semiclassical regime of interest. This implies that we
can without loss of generality, extend the code subspace about each such geometric
state, into the generalized code subspace, which formally is the union of all such
states. While the notion of a subspace about a given geometry makes sense, we
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should hasten to add that the extended definition does not, strictly speaking, give
rise to a subspace of the Hilbert space.

In this manner, we can chart out the generalized code subspace as an archipelago
of states in the Hilbert sea of states. As described above, we will take this to be the
union of the set of states which admit a geometric dual. They are classified by a
central state, like the vacuum or the highly excited states with energies of O.ceff/,
each being described by a smooth semiclassical metric, together with a set of low-
lying excitations around them. We caution though that in much of the literature,
the code subspace only refers to the island centered around the vacuum state. The
number of excitations one is allowed about each island is bounded, to avoid ending
up with a typical black hole-like state. Restricting to the domain around the vacuum,
we note that code subspace is the low energy subspace of states. It must however be
borne in mind that the space of states is a not a proper subspace of the Hilbert space,
but a convenient label for referring to the class of geometric states.

A precise characterization of the code subspace exists only in the vicinity of
the vacuum state of the CFT, since by symmetries, this has a unique gravitational
dual. There are a handful of other states, such as the eternal black hole which
is dual to the thermofield double state (in a doubled CFT Hilbert space), but a
complete characterization of the code subspace is lacking. In part, the problem is
to ascertain the full set of criteria which are necessary and sufficient for one to trust
the geometric description. We know of a few necessary conditions which we outline
below, but it remains to be seen whether this list is sufficient.

13.1 Criteria for Geometric Duals

The set of QFT states that have geometric duals is not exhaustively known as of this
writing. What we do know is a list of incomplete criteria that appear to be sufficient
empirically. We will try to give a flavour of what these conditions are, breaking
them into three inter-related but thematically distinct categories. We should first
ask ourselves under what conditions do certain field theories allow themselves to be
described holographically. Once we ascertain this, we can ask if specific states in the
Hilbert space of such QFTs admit a semiclassical geometric dual. Distinct from this
list of criteria is our need to assume that we have a geometric dual for a particular
QFT state and ask what such a description would entail for the field theory state in
question. Let us address these three issues in turn.
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13.1.1 Sufficient Criteria for QFTs to Have a Semiclassical
Gravitational Dual

We have explained some of the conditions which we know to be necessary in
Sect. 4.1. The field theories are required to have a large number of degrees of
freedom, and admit a sensible analog of a planar limit, which we characterized by
the requirement of a large central charge ceff 
 1. In addition, we need a second
hierarchy which ensures that the curvatures scales of the gravitational solution are
larger than the string scale, so that we can relate to Einstein-Hilbert dynamics (as
opposed to a classical string theory). One consequence of this is that operators with
spin s > 2 are required to be parametrically heavier than those with s 	 2 [215].
In known examples, this is ensured by a hierarchy between the string scale and the
AdS curvature scales. At a heuristic level, one may say that this can be ensured by
the QFT degrees of freedom being strongly coupled, but overall it is hard to quantify
this statement.

In 2-dimensional CFTs, one can argue for a precise bound on the spectrum based
on known geometric phenomena such as the Hawking-Page transition. This is the
statement that the thermal density of states of the theory at low temperatures scales
is O.1/, while at high temperatures, it is of O.ceff/, with a phase transition at some
temperature Tc � O.1/. Per se, this requirement by itself does not guarantee that
the dual field theory be described by semiclassical Einstein gravity. Nevertheless,
this particular constraint is easy to quantify explicitly in terms of a bound on the
spectral density. In [71], it is argued based on modular invariance that the number
of states with energy E D 	 � c

12
D h C Nh � c

12
is bounded as

�.E/ 	 e2�.EC c
12 / ; E � O.�/ (13.1.1)

While this bound is satisfied by known holographic field theories, it also turns out
to be upheld in a wider class of theories, such as the symmetric orbifold theory (or
in more general permutation orbifolds [63, 72, 73]).

In general, since QFT density of states grow as �.E/ � eE
˛

with ˛ < 1,
one would want to rephrase this constraint in more precise terms. Specifically one
would like to translate the spectral bound into a statement about a statement of the
QFT parameter/moduli space. This remains as of this writing an interesting open
question.

We have further seen in Chap. 12 that the holographic results in AdS3 are
reproduced by large c computations once we assume the sparseness of the low-lying
spectrum to imply the vacuum block dominance. The latter condition is however
stronger and it is likely that sparseness by itself is insufficient to guarantee the
existence of a holographic dual. There are already indications that some features,
such as the bound on Lyapunov exponents [223], requires more than sparseness
[224]. While explaining the chaos bound will take us far afield, let us briefly mention
here that this bound focuses on the exponential intermediate time growth of certain
out-of-time-ordered correlation functions. The initial inspiration for studying such
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objects originated from attempts to understand the link between entanglement and
gravity [162] in which the authors were interested in analyzing how entanglement
can be disrupted by disturbing an initial entangled state and thence monitoring the
state. It is unclear at present whether there are constraints from an entanglement
perspective that are stronger than the spectral sparseness criterion.

13.1.2 Field Theory Constraints on Geometry

There are several requirements that we would infer from the observables in any
state belonging to the QFT Hilbert space. For instance, one requires that the time-
ordered correlation functions and even non-local objects such as entanglement
entropy respect causality. This turns out to place restrictions on the gravitational
theory and solutions therein. We will focus here on the conditions that have been
inferred from the various known features of observables and entanglement entropy.

Causality

The basic requirement that all physical observables respect causality has a profound
implication for the gravitational solution. Naively, in the holographic setting, we
have two distinct causal structures: the first is the boundary causal structure which
we can choose at will, since this is just the arena where our QFT dynamics takes
place. There is however also the bulk causal structure which is determined post-
facto by the duality. For the duality map to be sensible, we require that the bulk
causal structure be compatible with the boundary causal structure. More strongly
one would note that the boundary causal structure is the fundamental object and the
bulk causal structure in asymptotically AdS spacetimes would have to reduce on
physical observables to just the boundary one.

In Einstein-Hilbert gravity coupled to matter, a very useful theorem in this
regard was proved by Gao and Wald [225], who showed that for matter satisfying
the null energy condition (NEC), the aforementioned requirement was satisfied in
smooth dual geometries. Extensions of the statement to other forms of gravitational
dynamics are unknown, but it is clear that the operative feature one needs is for
“gravity to be attractive”. The NEC is relevant for this in the simplest case, for
it ends up ensuring that null geodesic congruences which start contracting due to
gravitational attraction continue to do so. Once the dual geometry’s causal structure
is subsumed within the boundary causal structure, it follows that all local correlation
functions computed holographically will respect the field theory requirements. This
follows from the general observations in [226].

Causality also places restrictions on entanglement entropy, as discussed in
Sect. 2.2. This has to be upheld in the dual gravitational construction. It turns out
the NEC again suffices to show that the HRT/RT proposals are consistent with the
field theory causality requirements [81, 33]. The argument which may be viewed
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Fig. 13.1 An asymptotically
AdSdC1 spacetime with a
non-trivial causal shadow. We
have depicted regions A and
Ac along with their respective
domains of dependence
(shaded regions on the
boundary), and causal
wedges. The latter are only
indicated by a few geodesics
to avoid cluttering up the
figure. The central region
inside the spacetime bounded
by the two purple curves is a
spatial region on the initial
slice that is spatial to both
DŒA� and DŒAc�. Its domain
of dependence in the bulk is
the causal shadow region,
which alternately can be
expressed as (13.1.2). Figure
taken from [33]

as a generalization of the Gao-Wald theorem to codimension-2 surfaces relies on
showing that the extremal surface which computes the holographic entanglement
entropy lies in the so-called causal shadow region of the bulk. This is the region of
the bulk spacetime that is spacelike separated from the domains of dependences of
both the boundary subregion and its complement, viz., it is the causal complement
of the bulk future and past of the boundary DŒA� and DŒAc� (Fig. 13.1).

Causal shadow:
� QJCŒDŒA�� [ QJ�ŒDŒA�� [ QJCŒDŒAc�� [ QJ�ŒDŒAc��

�c
(13.1.2)

In pure AdS spacetime for the ball-shaped regions, the causal shadow turns
out to collapse to a codimension-2 hypersurface of the spacetime, thus uniquely
singling out the RT/HRT surface. However, in more general situations, the causal
shadow ends up being a bulk codimension-0 region as described in [33]. This in
particular implies that causality alone does not in general uniquely pin down the
bulk surface responsible for computing entanglement entropy. Any codimension-
2 surface located in the causal shadow would be an acceptable candidate for the
construction; it is the bulk gravitational dynamics that truly pin down the particular
surface of interest.

Entanglement Inequalities

We now turn to the constraints on geometric states arising from entanglement
structure of the QFT. A given collection of field theory entanglement entropies will
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of course satisfy the various quantum entropy inequalities such as those listed in
Sect. 2.4.2. These would of course have to be respected by the geometric duals, as
we have explained in Sect. 6.3. One can make the following general observations:

Strong Sub-additivity

The interesting quantum entropy inequality that does not follow straightforwardly
from the holographic prescription is strong subadditivity. While the proof for the
RT prescription goes through very easily without any input about the gravitational
solution, the corresponding proof in general time-dependent situations relies on
the gravitational dynamics respecting the NEC. It was first demonstrated that
gravitational solutions supported by matter violating the NEC would lead to a failure
of the strong subadditivity inequality in the dual state of the QFT [227]. The explicit
proof for the HRT prescription using the maximin construction [81] explicitly relies
on this condition to show that areas of the extremal surfaces cannot increase under
Lie drag along orthogonal null congruences. These statements, as in the previous
discussion, hold for bulk Einstein-Hilbert dynamics, and perturbatively away from
it in higher order derivative corrections.

Entanglement Density and Integrated NEC

The statement of the strong additivity for spatially-organized entanglement can be
converted into an infinitesimal (functional) variational statement. Let us say that
we have three regions A, ıA1 and ıA2 with the latter two adjoining the former
and moreover being small deformations of the (macroscopically) larger region A,
as illustrated in Fig. 13.2. Applying the strong subadditivity inequality (2.4.7) to the
four regions A, A[ıA1, A[ıA2, and A[ıA1[ıA2 and expanding out to leading

Fig. 13.2 Illustration of a
macroscopically large region
A which is perturbed in two
independent directions
infinitesimally to construct
regions A [ ıA1 and
A [ ıA2 , respectively. These
three regions, together with
A [ ıA1 [ ıA2, form the
spatial regions to which we
apply the strong subadditivity
inequality to derive the
second variational formula
(13.1.3)

A

δ2A

δ1A
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order in the infinitesimal variations ıA1 and ıA2, we are led to the variational
statement

OnA .ıA1; ıA2/ � �ıA1ıA2SA � 0 : (13.1.3)

What this says is that for a fixed quantum state, the entanglement density
OnA.ıA1; ıA2/ defined through this variational formula is non-negative definite. We
have indicated explicitly the dependence of the regulating region in the subscript
and view the small deformations thereof as the arguments of this density. One
can show that satisfying this infinitesimal version of the strong subadditivity is
tantamount to the more general relations (2.4.7) and (2.4.8) being upheld for the
state in question (for any choice of regions involved).

While the relations we have derived are valid quite generally, they are most
interesting in two-dimensional QFTs. The expression for the entanglement density
in this case was derived in Eq. (10.2.3). It was argued that for certain states
in such theories, the non-negative definiteness of the entanglement density is
holographically dual to an integrated form of the NEC [228, 213]. One finds that

OnA � 0 H)
Z

EA

p
�EA NA

.i/ N
B
.i/ EAB � 0 : (13.1.4)

In the above expression, N�.i/ with i D 1; 2 are null normals to the extremal surface
(4.3.2), �AB is the induced metric on the extremal surface EA, and EAB denotes the
geometric tensor appearing in Einstein’s equations. Using the bulk equations of
motion EAB D 8� G.dC1/

N Tmatter
AB , we would conclude that the matter stress tensor

Tmatter
AB supporting the solution should have to satisfy the NEC in its integrated form

over the extremal surface.
In [228], this statement was demonstrated for Lorentz invariant states that

geometrically encode renormalization group flows away from the AdS fixed point,
while [213] showed this for perturbative states in the vicinity of the CFT vacuum.
Should such a statement prove to be true in greater generality, one would have a very
direct link between the strong subadditivity inequality and the NEC. Unfortunately
this appears not to hold in the form stated in higher-dimensional field theories.
It is an interesting open question to ascertain what is the connection between the
infinitesimal form of strong subadditivity encoded in the entanglement density and
constraints on geometry.

Relative Entropy Constraints

We have already explained how relative entropy (2.5.1) serves as a useful discrimi-
nator between quantum states, and furthermore obeys a positivity and monotonicity
constraint. Working in the code subspace of the vacuum, can therefore compare
neighbouring states and infer properties that they should satisfy. These constraints
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have been analyzed in some detail in [228, 229, 230], whose results we summarize
below.

Much of the discussion below assumes the reference state to be the CFT vacuum
j 0i. One also considers spherical regions A in order to be able to have explicit
access to the modular Hamiltonian. So � D � is the vacuum reduced density

matrix induced onto the region, and we will take � D �A is the density matrix
corresponding to some excited state. The caveats explained in Sect. 12.1 do pertain,
but only insofar as perturbative excitations around the vacuum density matrix are
concerned. Large deviations away from the vacuum are no longer constrained by
the symmetry. Overall the use of relative entropy leads to an interesting set of
gravitational statements, which can be used to rule certain configurations from being
geometries dual to sensible quantum states.

• Firstly, for states that are infinitesimally apart, we know that the relative entropy
vanishes to leading order (2.5.8). This follows from the positivity requirement,
cf., Sect. 2.4. It turns out that this statement implies the linearized Einstein’s
equations in the dual gravitational theory [231, 232]. We will describe this in
some detail in Sect. 13.4.

• Going beyond the linear order, the relative entropy implies an inequality (2.5.7).
As with strong subadditivity, this places constraints on the gravitational side. In
[229], it was argued that the quadratic correction to the relative entropy, i.e.,
the quantum Fisher information (2.5.9) requires that a natural notion of energy
defined within the entanglement wedge be positive.

• The positivity of relative entropy beyond the perturbative limit implies that the
difference of the quasi-local energy between the two dual states must similarly
be non-negative definite. From here one can derive a family of positive energy
theorems for gravitational theories in AdS spacetimes.

• Monotonicity of relative entropy likewise translates to the statement of positivity
of the gravitational symplectic flux.

We will postpone the discussion of the canonical energy until we have built up
some necessary machinery relating to the covariant phase space of gravitational
theories in Sect. 13.4.

13.1.3 Constraints on Field Theory States to Admit Geometric
Dual

Thus far we have explained the general conditions under which a given geometry
may be interpretable as being dual to a state in the Hilbert space of the dual QFT. Our
discussion is by no means exhaustive, as there presumably are still other constraints
waiting to be discovered. What we know so far is that

• In a wide-ranging set of states, owing to the asymptotic ceff ! 1 planar limit,
the mutual information between two widely separated regions becomes sub-
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dominant, I.A1 W A2/ � O.1/ when A1 and A2 are macroscopically apart. Such
a phase transition ends up being guaranteed by the planar limit once the field
theory in question has a sparse low-lying spectrum [62]. This per se is therefore
not a strong diagnostic of the existence of a geometric dual, but more of a useful
first check.

• Geometric states are required to satisfy the monogamy of mutual information
I3.A1 W A2 W A3/ 	 0. This, for instance, precludes states like the GHZ state from
admitting geometric holographic duals. One however can check that randomly
chosen pure states of just a few qubits appear in general to have I3 < 0 [125], as
is the case with random tensor network states described in [233]. Neither of these
examples are close to being holographic in other respects, so again the relative
strength of this criterion remains unclear.

• As with the tripartite information I3, one might wonder whether there are further
constraints we should impose based on the general inequalities derived in the
form of the holographic entropy cone [126]. In order for these inequalities to
provide a useful constraint, one should first generalize them to the covariant set-
ting. At present we lack the knowledge of the covariant entropy cone. Therefore
further investigation is necessary prior to formulating a useful constraint.

13.2 The Dual of a Density Matrix

Let us now consider a variant of the question: “Which states in the QFT admit
geometric duals”? Suppose we are given both a global state of the QFT and in
addition a spatial subregionA. By tracing out the state in the complement, we obtain
�A, and then can ask: “Given the knowledge of �A, is it possible to associate a
specific region of the bulk geometry that is dual to it?”

The first set of investigations to focus on this question as phrased was in
the works [234, 235], which was subsequently elaborated upon in [81, 33]. The
current understanding is that the region of the bulk spacetime that is dual to the
density matrix is the so-called entanglement wedge. To explain this concept, we
need to understand first how we propose to relate bulk and boundary data in the
holographic correspondence and thence explain the rationale for the entanglement
wedge. Evidence in favour of the entanglement wedge comes from viewing the
holographic map as a quantum error-correcting code [236].

13.2.1 Local Bulk Operators in Holography

We have focused our attention in the previous section on asking, when is a given
QFT state describable by geometry? Supposing we have one such state wherein
the classical gravitational description is an excellent approximation, we should
wonder: how does one see that the bulk theory admits approximate locality? This is
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a feature of classical gravitational theories that we ought to recover from the QFT
data alone. A constructive way to proceed on this front would be to construct local
bulk operators that would capture the essence of what we seek in the semiclassical
gravitational picture. One would hope that systematic perturbative corrections in
.ceff/

�1 would allow for a determination within the remit of quantum gravitational
perturbation theory.

The first discussion of these local bulk operators dates back to the early days
of the AdS/CFT correspondence; [237] describe the construction of the boundary
to bulk map by invoking the relation between bulk fields and boundary QFT
operators. This was subsequently developed in a series of works by Hamilton,
Kabat, Lifschytz, and Lowe [238, 239, 240], who gave a nice characterization of the
bulk operators in terms of boundary QFT data explicitly using a Green’s function
technique. We will follow here a modern treatment of this discussion following
[241].

The basic piece of data we need for the construction is the “extrapolate map”
entry in the AdS/CFT dictionary [237, 242, 243], which allows us to recover bound-
ary correlation functions by extrapolating the insertion points of bulk correlation
functions. Recall that the GKPW construction [19, 20] for the bulk to boundary
map relates bulk fields to corresponding CFT operators.

Global Reconstruction

We will first work in global AdS (4.2.4) and then indicate how we can pass onto
various other domains. This particular construction will therefore be referred to as
the global reconstruction. To simplify the discussion, it is helpful to bring the radial
coordinate to a finite domain which can be done by the coordinate transformation
� D cot% so that the metric (4.2.4) simplifies to

ds2 D 1

sin2 %

�
dt2 C d%2 C cos2 % d�2

d�1
�

(13.2.1)

The boundary now is at % D 0 and the origin of AdSdC1 is attained at % D �
2

.
Since we need to refer to bulk and boundary coordinates in the same breath, let

us introduce some notation. Henceforth X will be a shorthand for bulk coordinates,
X � fx�; %g where x� (typically abbreviated as x) denotes the boundary coordinates
x� D ft; �d�1g. Given a bulk field 
.X/, we infer from the bulk dynamics that the
fields behave asymptotically as (4.2.13)

lim
%!0

%�	 
.x�; %/ D O.x�/ (13.2.2)

We have dropped the expectation value around the operator and choose to interpret
this equation now as a statement between operators of the bulk semiclassical
gravitational theory and the QFT on the boundary. This identification comes with
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an essential subtlety, for we are conflating the bulk and boundary Hilbert spaces;
these are dual to each other, but in reading (13.2.2), we are going to pretend that we
can extend the bulk Hilbert space to include the boundary. One can think of (13.2.2)
as the solution to the solution to the bulk dynamical equations in the absence of
boundary sources.

Given this solution, we can formally attempt to write down a Green’s function
that inverts the relation above and reconstructs 
.X/ given O.x/. This is what is
referred to as the bulk reconstruction programme, since here we start from the
boundary data which is well understood and obtain approximately local operators
in the dual which can then be used as probes of the local geometry. The difficulty in
implementing this at a naive level is simply that, as stated, we do not have a standard
Cauchy evolution problem. The boundary of AdS is a timelike hypersurface and
we would be required to relate data defined therein onto regions that are spacelike
separated from it. Nevertheless it is possible to show that within the .ceff/

�1
perturbation theory, this is possible to do. To leading order in ceff, this simply follows
from the fact that the bulk fields are essentially free (all interactions are suppressed
in the large ceff expansion). In this case, we simply work in a basis of Fourier modes
and invert the relation directly.

In order to write down a formula for the local bulk operator thus obtained, let
us introduce some notation. Given a point p with coordinates X in the bulk, we
introduce a boundary time strip Tp which is defined to be the set of all boundary
points that are non-timelike (i.e., spacelike or null) related to p.

Tp D
n
y 2 Bd

ˇ̌
ˇ p D X 2 M ; p … QI˙. y/

o
(13.2.3)

We illustrate this for the pure AdSdC1 geometry in Fig. 13.3.
The global reconstruction result can now be stated quite simply by noting that

the explicit inversion of (13.2.2) can be achieved by a boundary-to-bulk kernel
K. y�jx�; %/ such that


. p/ � 
.X/ D
Z

Tp

ddy K. y�jx�; %/ O. y�/ (13.2.4)

For the pure AdSdC1 geometry, one can give an explicit form for this kernel in
terms of special functions. In even-dimensional spacetimes d C 1 D 2n, it is simple
to express the result in terms of a spacelike Green’s function in AdS spacetime. We
can write for any asymptotic AdS spacetime a near boundary decomposition of the
Green’s function as:

G.XjX0/
%0!0���! 1

.2	 � d/ `d�1
AdS

�
%0	 Gsource.Xjx0/C %0d�	 Gvev.Yjx0/

�
(13.2.5)
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Fig. 13.3 The time strip Tp associated with a single bulk point p illustrated for various locations
of the bulk point. A local bulk field inserted at p is given as the integral of local boundary operators
smeared over Tp weighted by a kernel (13.2.4)

We want to localize the latter term which only involves the normalizable modes.
This can be done by suitably choosing the boundary conditions for the Green’s
function in AdSdC1.

In even-dimensional AdS spacetimes, the relevant spacelike Green’s function can
be expressed in terms of the AdS invariant distance � between two bulk points, say
X and X0.

� D X � X0 D `2AdS
cos2.t � t0/ � sin % sin %0 �d�1 ��0

d�1
cos % cos%0 (13.2.6)

For scalar operator O of conformal dimension	, we find [244]

GdD2m�1.�/ D �

2
.�2 � 1/ d�1

4 P�� .�/C = �.� C i�/2 � 1�� d�1
4 Q�

� .� C i�/

(13.2.7)

where P�� and Q�
� are Legendre polynomials of the third kind. One can check that

this is consistent with (13.2.5) with a vanishing source Green’s function. The odd-
dimensional case is more complicated, as there appears to be no spacelike Green’s
function that is expressible in terms of the AdS invariant distance alone (see [244]).

The kernel K. yjx; %/ in general is a solution to the bulk equations of motion
subject to the normalizable boundary conditions of the extrapolate map. As a
result, its specific form depends on the geometry of the bulk spacetime M. Since
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different QFT states correspond to different backgrounds, we have to determine
the kernel independently for a given state. States that have macroscopically distinct
properties will have widely differing kernels, but those that only involve perturbative
excitations can be understood within the planar (inverse ceff) perturbation theory.
One sees here the relevance of the code subspaces. In any one component of the
code subspace, we can determine the kernelK. yjx; %/ using its form in the geometry
of the parent state atop which we consider a few particle excitations.

Local Reconstruction

Having understood how global reconstruction works, let us turn to the local version;
by this we simply mean that we restrict attention to part of the bulk spacetime.
We already know that consideration of the QFT on Minkowski spacetime results
in the restriction of the bulk geometry to the Poincaré patch of AdS. We can be
even more ambitious and restrict attention to further subregions. For example, a
Rindler observer in R

d�1;1 will only see part of the Minkowski spacetime. The
corresponding bulk domain will similarly get truncated from the Poincaré wedge
to the AdS-Rindler wedge, cf., Fig. 13.4.

In these situations, one should be able to obtain a representation of the bulk
operators analogous to (13.2.4). However, now the support of the integral cannot
be restricted to the time-strip, since the coordinate patch of choice in AdS may not
encompass this boundary domain. This is clear already from the Poincaré patch
whose boundary is a Minkowski diamond illustrated above in Fig. 13.4 (cf., also
Fig. 4.1). This issue was addressed initially in [238] and certain subtleties in this
discussion were clarified recently in [245].

Fig. 13.4 The boundary domains for the (a) Poincaré patch and (b) Rindler reconstructions. A
local bulk field inserted at p is given as the integral of local boundary operators smeared over Tp
weighted by a kernel (13.2.4)
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For the field theory on Minkowski spacetime, by employing the explicit coor-
dinate transformation between the global and Poincaré coordinates one can show
that there is a representation of the form (13.2.4) except now the integration is not
carried out over the time-strip, but rather over the Minkowski diamond:


.X/ D
Z

Rd�1;1

ddy K. yjx; z/ O. y/ ; X D fx�; zg 2 Poincaré patch

(13.2.8)

This statement pretty much follows from the global reconstruction if we allow
ourselves the freedom to translate the bulk point p out towards the boundary of
AdSdC1, so that it becomes the spatial infinity I0 of Rd�1;1.

The Rindler patch of Minkowski spacetime provides a much more interesting
example. In this case, we have to restrict the operator to lie within a sub-domain of
the Poincaré patch of the bulk spacetime. To ascertain what the sub-domain is, let
us try to re-express the results for the global (13.2.4) and Poincaré patches (13.2.8)
somewhat differently. In writing the expressions (13.2.4) and (13.2.8), we focused
on a particular bulk point and then worked out which corresponding region should
we use to smear operators. Let us invert this picture and ask how to go from a given
boundary region to a bulk point. While we defined the point p to be non-timelike
related to all the points in the timestrip Tp, we can equivalently view p as belonging
to the intersection of the bulk causal future and bulk casual past of the boundary
time-strip. Moreover it is clear that any point which lies within this region can be
represented by smearing boundary operators in the time-strip.

This brings us to the definition of a bulk domain that is determined purely on
causal grounds. Consider a boundary causal domain D. This can be a time-strip T or
even the domain of dependence DŒA� of some subregion A which forms its Cauchy
surface. Utilizing the causal structure of the bulk spacetime, we can define a bulk
codimension-0 region, which we call the causal wedge of this boundary domain,
denoted WCŒD�. In the case of a boundary domain of dependence, we will rely on
the fact that the prescription of the Cauchy surface suffices to equivalently use the
notation WCŒA�.

The causal wedge of a boundary domain D is simply the set of bulk points that
are able to communicate with and receive communication from the said domain. To
wit,

WC ŒD� D QJCŒD� \ QJ�ŒD� (13.2.9)

We illustrate the causal wedges for boundary regions in both Poincaré and global
AdS in Fig. 13.5. A detailed discussion of causal wedges and their potential role in
AdS/CFT can be found in [107, 111]; further generalizations and related constructs
are critically examined in [246]. One can immediately check that, for the two simple
cases of a point, p in global AdSdC1 is the (degenerate) causal wedge of the time
strip Tp. Likewise the Poincaré patch may be viewed as the causal wedge of the
boundary Minkowski diamond. In these cases, all local operators within the causal
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Fig. 13.5 Depiction of the causal wedge WC ŒDŒA�� for a boundary domain of dependence. On
the left, we plot the causal wedge in Poincaé coordinates, and on the right, we depict the domains
WC ŒDŒA�� and WC ŒDŒAc�� in global AdS spacetime. In pure AdSdC1, the latter is coincides with
a Rindler decomposition, but as we shall see later, this does not always have to hold

wedge can be therefore reconstructed from the boundary operators suitably smeared
out on the boundary time strip or Minkowski diamond.

Let us also record that the boundary of the causal wedge is the union of bulk null
surfaces (it is a causal set after all) and D. The null surfaces are generated by ingoing
bulk null geodesics emanating from the boundary of D. Intersecting the past and
future going null geodesics, we generically find a bulk codimension-2 surface which
has been named the causal information surface „A [107]. It was further speculated
that the area of this surface in Planck units ought to have some intrinsic and useful
meaning in the dual QFT—the mysterious dual has been named causal holographic
information �A. One can show by the same arguments that establish the causality
property of the HRT construction that �A bounds the holographic entanglement
entropy SA. An interesting proposal is to interpret �A as a one-point entropy [247]:
we hold fixed the expectation values of all operators in DŒA� and maximize the von
Neumann entropy over the space of density matrices.

The generalization to the Rindler space and more general situations is now
straightforward. We define a local bulk operator in the causal wedge of some
boundary domain D through a formula analogous to (13.2.4) and (13.2.8). One
writes

X 2 WCŒD� H) 
.X/ D
Z

D
ddy K. yjX/ O. y/ (13.2.10)

In our discussion, we have focused primarily on scalar operators for which
the smearing kernels K. yjX/ are easy to write down. This can be generalized to
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other kinds of tensor fields, though some care must be taken while dealing with
gauge invariance. This issue arises both for bulk gauge fields which correspond to
conserved flavour currents on the boundary, as well as for the bulk gravitational
degrees of freedom which map onto the boundary energy-momentum tensor.

Another issue that needs to be handled carefully is the backreaction of any
local operator. We have so far pretended that we can work in a fixed background
spacetime and describe operators inserted locally thereon. This is true to leading
order in ceff but any field insertion in the bulk will eventually cause backreaction.
The strength of this backreaction is set by the energy carried by the field; in
gravity, we would note that this scales like m

mP
in Planck units. In field theory

terms the relevant parameter is 	
ceff

. As long as 	 � ceff, we can treat the
backreaction perturbatively, which is the general intention in the code subspace.
Once the field backreacts, we will induce gravitational dressing to the operator,
which equivalently can be seen as the non-vanishing of the energy-momentum
tensor’s expectation value on the boundary. The gravitational field can be chosen to
be suitably collimated in this perturbative expansion, so that the boundary energy-
momentum tensor is non-vanishing in a well-localized region inside the boundary
domain bounding the causal wedge.

13.2.2 Subregion-Subregion Duality

Now that we understand how to relate bulk and boundary operators, let us return to
our question: for a given region A, what is the bulk “dual” of the reduced density
matrix �A? We can interpret this question to mean that we fix �A and allow all
compatible density matrices for the full state � on A[Ac. With this understanding,
we would like to know whether there is a natural bulk spacetime region which is
determined by �A independently of the choice of the global density matrix �. A-
priori we could also consider other questions such as those which examine whether
the bulk region is sensitive to or is affected by �A. While these are interesting
questions in their own right, we will focus attention on the following specific
question. Given �A, in what region of the bulk can we uniquely reconstruct the
geometric data (components of the metric and other fields)?

One proposal put forth in [234] based on light-sheet arguments argued that the
causal wedge was the correct dual. From one standpoint, this seems natural: bulk
locality is manifest in the causal wedge thanks to the local reconstruction result
described above. Any operator in the causal wedge of a region A can be mapped
back to the boundary domain DŒA� using (13.2.10). One may indeed argue that this
is the minimum bulk region that should be reconstructible using the boundary data
in DŒA�.

However, note that the local operator reconstruction simply picks a suitable local
combination of QFT operators with support in DŒA�. Per se, it does not have any
information about the reduced density matrix itself. Consequently, [235], as well as
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[107, 81], argued that the requisite bulk region should contain more than the causal
wedge. The first of these works discussed various criteria such a region ought to
satisfy, noting that at the very least, the region in question ought to be cognizant of
the entanglement inherent in �A.

Motivated by these discussions, one can argue that the bulk region dual to the
information contained in the reduced density matrix ought to be the entanglement
wedge WE ŒA�. To define WE ŒA�, we start with the observation that, given the
reduced density matrix, one can compute the entanglement entropy. Geometrically
this implies that we should start with the extremal surface EA and construct WE ŒA�
therefrom. This can indeed be done quite simply by realizing the extremal surface,
being codimension-2 in the bulk spacetime M, naturally splits the bulk into four
distinct regions: the future and past of the extremal surface, and two regions that are
spacelike related to it in the direction of A and Ac, respectively. We seek the latter
set of regions which can be defined in terms of the homology surfaces RA and
RAc . Recall that the homology surface is a bulk codimension one surface which is
bounded by the extremal surface and the boundary region cf., (4.3.1). Given this,
we can simply define the entanglement wedge as the bulk domain of dependence of
the homology surface, viz.,

WE ŒA� � QDŒRA� : (13.2.11)

Note that the decomposition of the bulk spacetime across the extremal surface can
thus be simply expressed as

M D WE ŒA� [ WE ŒAc�[ QJCŒEA� [ QJ�ŒEA� ; (13.2.12)

which is the bulk analog of (2.2.1). Indeed one can imagine illustrating these in the
same vein as in Fig. 2.3 in one higher dimension.

This picture is in fact naturally suggested by our earlier discussion involving the
quantum corrections to entanglement entropy [94]. We have argued in Sect. 5.4 that
the leading 1

ceff
corrections to the boundary entanglement entropy arise from the bulk

entanglement across the extremal surface. For this to make sense, it must be true
that the extremal surface naturally decomposes the spacetime in the form (13.2.12).
The bulk entanglement SbulkRA D S1�loop

A can be computed on any spacelike surface
foliating the entanglement wedge owing to the fact that WE ŒA� is a domain of
dependence. Since we can compute the QFT entanglement using the knowledge of
�A, we would learn that there is non-trivial bulk entanglement entropy at O.1/ from
SbulkRA . This information being recoverable in the field theory, it must therefore be true
that the bulk subregion dual to �A is similarly aware of the amount of entanglement
between A and Ac. Heuristically, the presence of an EPR pair separated in the bulk
across EA should be detectable using the information contained in �A alone. This
naturally pins down WE ŒA� as the bulk subregion dual to the boundary DŒA�.

On the other hand, the causal wedge for a boundary region WCŒA� is not its
own domain of dependence [246]. To see why this is the case, realize that the
causal wedge is defined starting from the boundary DŒA� (13.2.9). We can try to
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pick a spacelike codimension-1 surface QA within WC ŒA� that is anchored on A
and the causal information surface „A, i.e., @QA D „A [ A, and construct its
domain of dependence QDŒQA�, but this bulk causal domain will differ generically
from WCŒA�. The reason it does so is that WCŒA� is obtained by following ingoing
null geodesics from the boundary, which by definition are complete towards the
boundary. These geodesics will caustic deep into the bulk, resulting generically
in „A being a non-smooth surface. On the other hand, the boundary of QDŒQA� is
constructed by shooting null geodesics off „A, whence they are complete towards
„A, but would caustic before approaching the boundary. Generically the two loci
of caustics are distinct and thus the two sets non-equivalent, as emphasized in
[246]. Moreover, the causal wedges for a region and its complement do not meet
at a common codimension-2 surface. So no decomposition of the form (13.2.12) is
possible for them. These observations render WCŒA� unsuitable as a candidate dual
to the boundary density matrix.

While we have ruled out the causal wedge, note that this argument does not
preclude QDŒQA�. In fact, consider any spacelike codimension-2 surface ‰A lying
in the causal shadow region of A and Ac. We can always decompose the bulk
spacetime into four causal domains across ‰A, as we did with the extremal surface
in (13.2.12). In particular, we could compute the bulk entanglement entropy for
a Cauchy slice bipartitioned across ‰A and attempt to associate it as an O.c�1

eff /

contribution of some observable associated with the spatial boundary region A. If
consistency with boundary bipartitioning were the only constraint, then any ‰A
of the above kind, including „A which lies at the edge of acceptability vis a vis
causality, should have been acceptable as the bulk dual of entanglement entropy.
However, the crucial point is that no dynamical principle singles out ‰A (or „A).
The special feature of the extremal surface is that it is picked out by the bulk
gravitational dynamics when we implement the dual of the replica construction.

There is another minor point relating to an entanglement wedge which is worth
bearing in mind. If we consider just codimension-2 extremal surfaces anchored
on the boundary, then it turns out in many spacetimes one cannot foliate a bulk
Cauchy surface with such surfaces, leading to the concept of “entanglement holes”.1

Most of the explicit cases in which these have been discussed turn out to be static
spacetimes. The simplest examples are provided by the Schwarzschild-AdSdC1
black hole spacetimes [102] (see Sect. 6.1), but as discussed in [235, 249, 123],
such behaviour can also happen in causally trivial spacetimes. More generally, one
can argue that there exist bulk codimension-0 regions which are not penetrated
by any boundary-anchored extremal surfaces. Despite this, it remains true that
these spacetime regions are completely contained within the entanglement wedges
WE ŒA� or WE ŒAc�. Indeed this must be so, for otherwise there is no semiclassical

1Some authors, e.g., [248] have taken to calling such regions the entanglement shadow, inspired
by the idea of a causal shadow. We find this terminology extremely misleading. Utilizing causal
constructs, the natural regions in question are the entanglement wedges, which, as discussed in the
text, are oblivious to these bulk holes.
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decomposition of the bulk Hilbert space to enable one to compute the bulk one-loop
contribution. So from the perspective of bulk reconstruction, the entanglement holes
are inconsequential in so far as the entanglement wedge reconstruction is concerned.

There is an important consequence of identifying the entanglement wedge as
the natural dual of the reduced density matrix. We take this statement to imply
that the boundary observer restricted to DŒA� can learn about the bulk geometry
in the entire WE ŒA�. We have hitherto argued that in order to satisfy causality of
entanglement entropy, the extremal surface EA has to lie in the causal shadow. This
set can however be quite large, and so EA can lie very deep inside the bulk and, in
general, well outside the causal wedge. Indeed, it is possible to construct examples
in which the entanglement wedge contains a substantial part of the spacetime far
beyond black hole horizons, cf., [33].

This brings forth a natural question: if the dual of the density matrix is the
entanglement wedge, then should we not be able to construct local operators in the
semiclassical limit all through this region, and not just in the smaller causal wedge?
This question has been surprisingly hard to answer, though there is now evidence
that the subregion/subregion duality does involve a boundary reconstruction of the
entanglement wedge [250, 97, 236].

To see the difficulty, let us first point out a simple argument precluding an
expression along the lines of (13.2.10). Take two local bulk operators 
1.X1/ and

2.X2/ inserted at two distinct points X1 and X2 in the bulk. Let us assume that
X1 and X2 are timelike separated and furthermore fX1;X2g 2 WE ŒA�nWC ŒA�,
i.e., they both lie outside the causal wedge but inside the entanglement wedge.
Now these two operators do not necessarily have to commute with each other and
we shall arrange them not to do so Œ
1.X1/; 
2.X2/� ¤ 0. However, should there
have been an explicit inversion of the extrapolate map along the lines of (13.2.10),
then we could have rewritten, say 
1.X1/ in terms of local operators supported in
DŒA�, say 
1.X1/ D R

DŒA� d
dy K. yjX1/O. y/. But now note that X2 is spacelike

separated from all points in DŒA�, as it lies outside the causal wedge. Therefore
the boundary representative, if 
1.X1/ and 
2.X2/ would have to commute, since
ŒO. y/; 
2.X2/� D 0 ;8 y 2 DŒA�. This is a contradiction, which invalidates our
assumption.

The issue is that we are assuming a local representative for the bulk operator
in the entanglement wedge. The naive contradiction can be easily avoided if the
boundary representative for the entanglement wedge fields was non-local. Indeed
one of our motivating arguments for WE ŒA� was the fact that the knowledge of the
reduced density matrix should somehow be factored in. One natural guess which
will take care of this is to consider not just boundary Heisenberg operators as in
(13.2.10), but also to take into account the modular evolved operators [97]. One
could for instance write a suggestive expression:


.X/ D
Z

ds
Z

DŒA�
ddy QK. y; sjX/ OA. y; s/ ; X 2 WE ŒA� (13.2.13)
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Here s is the modular time, and the boundary modular evolved operators are defined
by conjugating with the modular evolution operator �A, viz.,

OA. y; s/ � e�sKAO. y/ esKA : (13.2.14)

To understand this construction, we need better intuition for the modular evolved
operators. Unfortunately the modular Hamiltonian is a rather complicated non-
local operator in most situations. There are a handful of circumstances wherein the
modular Hamiltonian simplifies: the vacuum state restricted to either the Rindler
wedge of Minkowski space for all relativistic QFTs or spherically symmetric
ball-shaped domains in CFTs, whence it is given by an integral of the energy-
momentum tensor, cf., Sect. 6.1. Unfortunately in these simple cases, the causal and
entanglement wedges turn out to coincide, rendering them somewhat unsuitable for
building further intuition.

The simplest non-trivial case in which progress may be possible is to consider
disjoint spherical ball-shaped regions for the vacuum state. The extremal surfaces
and the entanglement wedge in the regime where the mutual information is non-
vanishing differ significantly from the causal wedge. For the sake of visualization,
we depict the situation in our familiar AdS3 geometry in Fig. 13.6.

Fig. 13.6 The distinction between causal and entanglement wedges for a disjoint region A D
A1 [ A2 in the AdSdC1 spacetime. We have plotted the domains for d D 2. The left plot depicts
the full wedges WE ŒA� and WC ŒA� where we have shown the skeleton of the null geodesics that
bound the domain. The right plot depicts the same projected onto the Poincaré wedge for ease of
visualization. We have refrained from labeling the three-dimensional plot to avoid cluttering up the
picture
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13.3 Holography and Quantum Error Correction

In the previous section, we have given arguments in favour of the entanglement
wedge reconstruction for a given boundary subregion. As discussed there, the
strongest evidence comes from the structure of the boundary entanglement entropy
in the semiclassical limit ceff 
 1.

There are other compelling reasons to believe in the entanglement wedge recon-
struction conjecture as was originally argued using ideas borrowed from quantum
error correction by Almheiri, Dong, and Harlow (ADH) [250] and beautifully
illustrated in toy models built using tensor networks [251] (which has come to
be known as the HaPPY code after the authors). Building on these ideas and the
equality of the bulk and boundary relative entropies [97], a robust argument for the
entanglement wedge reconstruction was obtained in [236]. We will attempt to give
a flavour of the ideas contained in the ADH in the discussion below (Fig. 13.7).

We have demonstrated hitherto that there are two useful local reconstructions
of the bulk: the global one which is reasonably unambiguous, and a local one
that involves restricting to subregions. Now, consider a bulk operator 
.X/. In
the global reconstruction, we simply take the time strip related to X. But should
we want to perform a local Rindler reconstruction, we have to face the following

Fig. 13.7 The bulk reconstruction of an operator close to the boundary. We have changed
conventions from earlier for visualization. The boundary of the entanglement wedge is now
depicted explicitly using the null generators and we also color code the region A and its associated
extremal surface EA in the same format. The plot on the right shows the projection onto the
constant time slice t D 0. The operator in the bulk will have to commute with the operators in
the complementary region whose entanglement wedge is shown
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question: which domain on the boundary should we choose to reconstruct? We
minimally want X to lie on a boundary-anchored extremal surface, so that it is in the
entanglement wedge of some boundary region, which is a rather weak requirement.
There are many entanglement wedges that contain the same bulk point.

The essential point we wish to make can already be exemplified by considering
the CFT vacuum, and taking the regions to all be our familiar ball-shaped regions.
While here we fail to detect the distinction between causal and entanglement wedges
as WCŒA � D WE ŒA � in pure AdSdC1, the distinction per se does not matter for
the purposes of the argument. However, in the interest of generality we will talk
about the entanglement wedge, hopefully making it clear that our arguments apply
to it more generally.

The Rindler representation leads to some a-priori counter-intuitive properties
for the local reconstructions. Consider the following set of gedanken experiments,
which illustrate the strangeness that we have to contend with. In the first instance,
let us consider a bulk point X which is sufficiently close to the boundary, so that
it can be represented in the entanglement wedge of a relatively small region, say
A. The bulk point is spacelike relative to the complement Ac. By bulk causality,

.X/ commutes with all operators in Ac. If we can localize A arbitrarily, then we
would have a problem—the operator 
.X/, and thus its boundary representative,
would have to commute with all the operators on the boundary. In the limiting
case, Ac ! †, implying that 
.X/ commutes with all operators in the boundary
operator algebra. This is in tension with the irreducibility of the operator algebra
representation on the Hilbert space (and 
.X/ is clearly not proportional to the
identity).

One may hope to do away with the above puzzle, by attributing it to regulator
issues, but we can up the stakes by considering the next scenario. Say we have two
regions A1 and A2 and a bulk point that X 2 WE ŒA1� \ WE ŒA2�. This bulk point
now has distinct representations on the boundary in DŒA1� and DŒA2�, respectively
(among others). How are these two representations related? Clearly, they cannot
correspond to the same boundary operators, since the two boundary domains may
have non-overlapping elements in their respective operator algebras. Could it be
that the representation only involves the common elements of the operator algebra?
But this can be explicitly falsified by considering the bulk point to like outside
WE ŒA1 \ A2� (see the configuration illustrated in Fig. 13.8). This means that in
order to represent the operator 
.X/ in the boundary, we need elements in the
complement of A11 \ A2, or more precisely, in .DŒA1� [ DŒA2�/ nDŒA1 \ A2�.
The bulk operator ‘needs to know’ more than the overlap of the two regions, but in
slightly different form, depending on how we choose to represent it.

Things get more interesting when we realize that we can have regions Ai, which
are such that no one of them contains information about the bulk operator 
.X/,
lying outside each of their entanglement wedges as it does. But we can choose X to
lie in the common entanglement wedge of at least two of the regions. The easiest
scenario to envisage here is to take three symmetric regions that are each a third
of the boundary and X to be at the center of AdS. No single region’s entanglement
wedge reaches out to the center, but the union of two adjacent regions has one large
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Fig. 13.8 Two non-trivial situations involving local operator reconstruction. In the first instance,
on the left, we have a bulk point that is the entanglement wedge of the union of two regions (red),
but it cannot be reconstructed from either of the individual regions (green and purple) nor their
mutual intersection (red). On the right, we illustrate the circumstance in which the bulk point is
not reconstructible from any one single region, but can be represented in the union of any pair of
regions

enough to contain X: 
.X/ 7! DŒAi [ AiC1� but 
.X/ ¹ DŒAi� for i D 1; 2; 3

(Fig. 13.8).
We can make the situation even more interesting: consider two regions A1

and A2 anti-podally across from each other in global AdS. If the complementary
region is large enough, then I.SA1 W SA2 / D 0. In this case, WE ŒA1 [ A2� D
WE ŒA1�[WE ŒA2�. Let X be the origin, which lies excluded from this entanglement
wedge, and so 
.X/ has no representation onDŒA1�[DŒA2�. Now gradually increase
the sizes of the regions (still keeping them symmetrically distributed). At some
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point, when A1 [ A2 is greater than half of the total system, we encounter a
phase transition in the mutual information; the extremal surface EA1[A2 (the global
analog of the rainbow bridge in Fig. 6.2) now gives the dominant contribution.
The new entanglement wedge will contain the origin, implying that we can now
reconstruct 
.X/ on DŒA1� [ DŒA2�. On either side of the transition point, we
have vastly different bulk reconstruction, though the change in the boundary
algebra is infinitesimal. We can go on and concoct even more exotic behaviour by
picking a collection of small regions Ai which are initially far enough apart, and
Vol.[i Ai/ D 1

2
Vol.†/ � ıV . Deforming the regions slightly, we again encounter

a jump in the extremal surface from the disconnected to the connected one once
Vol.[i Ai/ D 1

2
Vol.†/ C ıV . This leads to a macroscopically different domain of

the spacetime being reconstructible from the subregions!
All told, these examples illustrate that the features of subregion/subregion duality

are somewhat unconventional at first sight. These strange requirements are in fact
a clue to the modus operandi of the local reconstruction map. What we have are
different boundary realizations of the same bulk operator, but we need to ensure
that the boundary avatars are inequivalent. This kind of behaviour is exactly what is
necessary for quantum error correction. We won’t explain in detail how quantum
error correction works, but note the following salient features. One encodes the
message, which we can think of as comprising for a certain logical m number
of qubits (or degrees of freedom) into a larger system of physical n qubits. The
encoding map is described by a unitary that takes our message and scrambles it into
the larger system, by suitably entangling the m-qubits with the remaining .n � m/-
qubits. We may w.l.o.g. assume that the latter were originally in some reference
state.

We want to ensure the following: should we end up losing some l < n qubits,
we want to be able to still read the message and protect against the loss. Clearly, we
cannot lose too many qubits; for then there would no message to read. The maximum
number that we can end up missing can be estimated to be simply lmax D 1

2
.n�m/,

so the message is recoverable for l 	 lmax. This should be intuitive: we need our
message qubits to be unentangled with the lost ones. In particular, the combined
message and loss subsystems of total dimension m C l must be smaller than the
total number of qubits we retain viz., n � l. This then leads to the requirement we
impose on l 	 lmax given the logical and physical qubits. For large systems, one
can motivate this using Page’s theorem [252], which states that random states of a
bipartite system induce a maximally mixed state on the smaller factor.

The embedding of a message into a larger space is analogous to the representation
of the bulk operator into the boundary Hilbert space. Not all bulk operators could be
embedded this way, owing to the fact that messages are necessarily shorter than the
enlarged encoding. All we care about is that any observable we could have defined
on the original message can be computed accurately following the loss. This leads
to the idea of the code subspace in the error correction as being the subspace of the
enlarged system with sufficient entanglement to be robust against erasures. ADH
argue that viewing the bulk reconstruction map in terms of an error-correction code
resolves the seemingly bizarre features of the local reconstruction noted above. The
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analogy with bulk reconstruction is sharply phrased in terms of the operator algebra.
While standard quantum error correction deals with the correction of states, which
are passed onto a quantum channel for communication, for holography one really
needs to correct for logical operation at the level of operators. One can therefore
view the holographic error correction more accurately as “operator algebra quantum
error correction”. The interested reader should refer to the original papers cited
above for a more detailed account of these developments.

13.4 Entanglement and Gravity

The connection between geometry and entanglement, as discussed in its various
incarnations above, explores how the spacetime geometry may be reconstructed
given the field theory entropy data. As such this does not determine form taken
by the bulk dynamics. Nevertheless, one might argue that the fact that we use the
RT/HRT prescriptions in relating entanglement entropy to the area of some surface
pre-supposes that the gravitational equations of motion arise from the Einstein-
Hilbert action. For other forms of gravitational dynamics, we would have to evaluate
a different functional on some other surface. Hence one might imagine that there is
a way to extract the bulk dynamics directly from entanglement.

In a set of papers [231, 232], it was demonstrated that one can indeed obtain
the linearized gravitational equations of motion. Furthermore, [253] argued that the
non-linear equations should also follow. The basic idea behind these constructions
is to build upon the results of [56], who explored holographic properties of relative
entropy. We need two pieces of information from field theory:

• The first law of entanglement (2.5.8), which we reproduce for convenience

ıSA D hKA i : (13.4.1)

Recall that this, being a statement about the linear deviations of a reference state,
is upheld in any QFT.

• The explicit expression for the modular Hamiltonian for spherical ball-shaped
regions in the vacuum state of a CFT (6.1.48). We will express this result for a
ball of radius R, centered at x0 2 R

d�1 at t D t0 in the following form:

K D 2�

Z

DŒA �

dd�1x
R2 � .x � x0/2

2R
h T00.t0; x/ i : (13.4.2)

Focus attention on the domain of dependence of the region A which is
conformally mapped to the hyperbolic cylinder Hd�1 � R; cf., Sect. 6.1. Being a
static spacetime with metric (6.1.41)

ds2 D �d2 C R2
�
du2 C sinh2 u d�2

d�2
�
; (13.4.3)
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this geometry possesses a Killing vector field ��
H

D 2� R
�
@
@

��
. The normalization

is chosen to make explicit the fact that the temperature for the theory on Hd�1�R is
related to the curvature scale, T D 1

2� R . The vector ��
H

is the canonically normalized
thermal vector.

We can follow this vector under the conformal map to learn that DŒA � possesses
a conformal Killing vector field

�� D � R

�
@

@t

��
��
R

"
��.t � t0/

2 C .x � x0/2
� � @
@t

��
�2 .t�t0/.x

i�xi0/

�
@

@xi

�� #
:

(13.4.4)

Abstractly, the above is simply the combination of a time translation and a special
conformal generator in R

d�1;1; one can check � D i�
R .R

2 Pt C Kt/. This enables

us to express the modular Hamiltonian associated with � , (13.4.2), in terms of this

vector field. One can check

K D
Z

DŒA �

d†� T�� �
� ; (13.4.5)

where d†� is the induced volume element on a codimension-1 Cauchy slice of
DŒA �.

The holographic dual of the CFT on the hyperbolic cylinder Hd�1 � R at a
temperature T D 1

2� R is the Rindler slicing of AdSdC1. The geometry takes the
form of a black hole spacetime with metric

ds2 D �%
2 � `2AdS

R2
d2 C d%2

%2 � `2AdS

C %2
�
du2 C sinh2 u d�2

d�2
�
: (13.4.6)

The entanglement entropy is simply given by the entropy of the above black hole
geometry, whose horizon lies at % D `AdS. This spacetime inherits the Killing field
2� R @ whose orbits have a fixed point at the bifurcation surface of the black hole.
The modular Hamiltonian (13.4.5) in this presentation is a symmetry generator. In
the hyperbolic black hole frame, we are simply performing a time translation which
leaves the static exterior geometry invariant. The expression for the gravitational
version of the modular Hamiltonian is then the energy of the black hole measured
at infinity. The AdS/CFT dictionary relates this to the boundary energy-momentum
tensor, so that we can write:

QKball D
Z

DŒA �

d†� QT�� �� D
Z

DŒA �

d†� TCFT
�� �� ; (13.4.7)
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where we use the tilde to refer to the gravitational contribution. We can interpret the
gravitational modular Hamiltonian as being the conserved charged associated with
the boundary conformal Killing vector �� .

In the original presentation of the problem, in which we have A � R
d�1;1, the

dual spacetime is Poincaré-AdSdC1 with metric (4.2.5). The entanglement entropy
is the area of the extremal surface EA , which is a hemisphere in this geometry
(6.1.23)

EA D ft D t0; .x � x0/2 C z2 D R2g : (13.4.8)

The domain of outer communication of the black hole geometry (13.4.6), which is
the region outside the horizon % � `AdS, is simply the causal wedge of the ball-
shaped region A in Poincaré-AdSdC1. This is a special circumstance in which the
causal wedge and entanglement wedge of the boundary domains coincide. Therefore
we may write

WE ŒA � D WCŒA �
conformal to�������! exterior region of hyperbolic black hole

(13.4.9)

13.4.1 Linearized Gravity from Entanglement

We now have all the geometric ingredients in place to analyze the linearized
gravitational dynamics. The idea is going to be to start with � and to consider

perturbations atop it. For small perturbations, we will expect the entanglement first
law (13.4.1) to be upheld. This statement can be interpreted in the hyperbolic
conformal frame as a constraint on perturbations to the black hole geometry.
Physically one imagines that we start with the static black hole solution (13.4.6)
and perturbs it by throwing some matter into the black hole. The linear response of
the black hole respects the first law of black hole thermodynamics, which states that
the changes in the gravitational energy are compensated for by the change in entropy
as long as the original configuration is on-shell, i.e., satisfies the gravitational
field equations. We can relate the gravitational energy to the gravitational modular
Hamiltonian and thus learn that:

ıSbh D ıEbh D ı QKball (13.4.10)

The first equality here is the statement of the first law of black hole dynamics [89]
and the second equality follows from the AdS/CFT dictionary. This is the bulk
analog of the entanglement first law and contains all the information necessary to
extract the dynamics.
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We will demonstrate below in Sect. 13.4.2 how the first law of black hole
mechanics is derived. For the moment, let us take this as given and proceed to see
how we obtain the gravitational equations of motion. The proof can be succinctly
summarized by the following set of observations.

Recall that SA D Sbh, which immediately implies that ıSA D ıSbh holds for
small variations. Using (13.4.1), we can further eliminate ıSA in favour of ıKA .
But the latter is related to the gravitational modular Hamiltonian, which implies that
ıSbh D ı QKball, leading thence to (13.4.10), upon relating the gravitational energy to
the gravitational modular Hamiltonian. What this means is that, whenever the first
law of entanglement entropy holds in the boundary field theory, the gravitational
first law is upheld for the dual configuration. We should note that we can interpret
this statement in either conformal frame described above, and it applies to arbitrary
ball-shaped regions.

Now the standard derivation of the gravitational first law (13.4.10) assumes the
linearized field equations and thence derives ıSbh D ıEbh as an on-shell statement.
We are however obtaining this relation from the properties of the CFT vacuum state
interpreted holographically. Therefore we can reverse the standard derivation and
infer from the fact that the CFT implies the first law that the bulk dual must in
turn satisfy the gravitational field equations: In other words, denoting the linearized
Einstein’s equations as ıEg D 0, we have:

ıEg D 0
[89]H) ı QSbh D ı QEbh

ıSA D hKA i [232]H) ıSbh D ıEbh H) ıEg D 0

(13.4.11)

To obtain all the components of the gravitational equations of motion, we should
not just consider ball-shaped regions confined to a single time slice, but allow
ourselves the freedom to work in various boundary Lorentz frames. The construction
is only sensitive to the gravitational field equations, i.e., it only picks out the
dynamics of the linearized metric. If we have solutions with no (bulk) matter sources
supporting the geometry, then the knowledge of SA is sufficient to recover the
complete mapping from the field theory states in the neighbourhood of the vacuum
to the linearized part of the dual spacetime.

We are assuming in this derivation that the vacuum state of the CFT is described
in the gravitational picture by the pure AdS solution. This is sufficiently innocuous,
since the symmetries preserved by the CFT vacuum state uniquely single out the
AdSdC1 background as the putative dual. All the first law of entanglement teaches
us is the dynamics of metric perturbations about this background. At no stage in
our derivation have we had to say what the gravitational theory is. The discussion
thus holds not just for Einstein gravity but for any general diffeomorphism-invariant
gravitational dynamics with perhaps higher derivative corrections. This better be
the case for the derivation of [89], which is used in [232] and which works for
any diffeomorphism-invariant theory of gravity. The precise details of the entropy
functional and the form of the gravitational equations of motion change, but the set
of implications described in (13.4.11) continue to hold as stated.
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We should however remind ourselves of the caveats discussed in Sect. 12.1. It
may indeed transpire that we are unable to discriminate with the data at hand the
explicit gravity theory. As explained in [216, 217], it is plausible that there exists
an effective Einstein-Hilbert theory with modified parameters which mimics the
gravitational dynamics.

So far there isn’t a very compelling argument for the non-linear Einstein’s
equations to be obtained from entanglement-based considerations. There have been
some suggestions as to how this could be done in [253], but one would like to
have a more direct argument. It is however hard to see how the discussion above
generalizes, since the general constraint which replaces the first law is the positivity
of relative entropy which translates into an inequality ıKA � ıSA. We describe
constraints arising from the relative entropy in Sect. 13.4.4.

13.4.2 The First Law of Black Hole Mechanics

To ascertain the gravitational equations of motion at the linearized level, we need
to understand how the first law of black hole thermodynamics works in general.
This was beautifully explained in a construction by Wald [254] and subsequently
elaborated upon by Wald and Iyer [89] about two decades ago using standard
variational calculus for a classical diffeomorphism-invariant Lagrangian.

The basic idea can be understood as follows. Say we have a diffeomorphism-
invariant action which determines the bulk dynamics. Suppose we perform a
standard Euler-Lagrange variation to obtain the equation of motion. Varying the
Lagrangian, we would get the equations of motion modulo some boundary terms.
In the gravitational context, [89] showed that these boundary terms via a Noether
construction is related to the entropy of the black hole.

Let us consider a diffeomorphism-invariant gravitational Lagrangian, which we
view as a .d C 1/-form in bulk. This is to enable us to write the variational
expressions without worrying explicitly about the measure factor. We denote
differential forms with a bold-face font to avoid confusion. We have Sbulk D R

L.
/,
with 
 being our collective label for all the fields including the bulk metric. The
variational calculus for L is encoded in the statement:

ıL D E
 � ı
 C d‚.
; ı
/ (13.4.12)

in whichE
 denotes the equations of motion for the field 
 and d‚ is the symplectic
potential. It comprises of boundary terms (encoded as a spacetime d-form) that
arise upon integration by parts. These terms depend both on the fields and their first
variation, as indicated. The Noether construction allows us to write down conserved
charges from this basic variational statement.

We want to consider theories that are diffeomorphism-invariant. By employing
the Noether construction, we can obtain the charge associated with the trans-
formation. This involves varying the fields along the symmetry direction. A
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diffeomorphism, i.e., a coordinate transformation, is implemented by Lie dragging
all the fields along a vector field � that implements the transformation. Under such
a transformation, the change of the Lagrangian is by a total derivative.

Say we consider an arbitrary vector field � and vary the Lagrangian under a
diffeomorphism generated by it. Since we vary the fields in a direction specified by
�A, the change ı�
 is obtained by taking the correct directional derivative of the field

 along the vector. This is achieved by the Lie derivative operation ı�
 D L�
. For
example, metric changes by gAB 7! L�gAB D rA�B C rB�A. Furthermore, denote
the interior contraction of a differential form with a vector by � W V. p/ 7! V. p�1/.
This maps p-forms to . p � 1/-forms: ��V D �AVA;A1���Ap�1 . One useful relation to
remember is that the Lie derivation along � can be expressed as a combination of
exterior derivation and interior contraction:

L� D f�� ; dg D d�� C ��d (13.4.13)

The reader may find [32] a helpful reference for these concepts.
We can now write the change of the Lagrangian under a diffeomorphism as

ı�L D L�L D d.��L/ ; (13.4.14)

where we exploit the fact that L is a top-form and hence dL D 0. The transfor-
mation (13.4.14) must vanish owing the invariance of the theory under coordinate
transformations. Now associated with any symmetry, we should be able to construct
a conserved current thanks to Noether’s theorem. The current associated with the
diffeomorphism will be denoted as JAŒ��. Instead of writing, the current we will
write an expression for its Hodge-dual J. Define thus the Noether current as the
spacetime d-form:

J D ‚.
;L�
/� ��L (13.4.15)

Note that the above is entirely analogous to the construction of a Hamiltonian from
the Lagrangian through a Legendre transformation; this would indeed be the case
if the symmetry was associated with time translations. The conservation J follows
from (13.4.12), (13.4.14) upon using the equations of motion, for

rAJ
A D dJŒ�� D d‚.
;L�
/� d.��L/

D �E
 � ı
 (13.4.16)

We will indicate statements that are true on-shell, i.e., upon using equations of
motion with

ED and thus write:

dJŒ��
ED 0 H) JŒ��

ED dQŒ�� (13.4.17)

This defines the Noether charge .d � 1/-form Q on M.
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Fig. 13.9 A plot of the
Schwarzschild-AdS Penrose
diagram displaying the
features of import in the
derivation of the first law of
black hole mechanics

While these statements are valid for any diffeomorphism-invariant theory, we can
specifically apply them to a gravitational Lagrangian and restrict attention therein to
a stationary black hole solution of the equations of motion. These geometries have
a bifurcate Killing horizon, which is generated by a Killing field �Ahor . The future
and past horizons H˙ are spacetime codimension-1 null surfaces ruled by the null
generator �Ahor and intersect on the bifurcation surface which is fixed point of �Ahor .
The latter is a codimension-2 extremal surface in the spacetime—we will call it
Ehor. Refer to Fig. 13.9 for an illustration of these features in the Schwarzschild-
AdS geometry.

The horizon generator gives us the black temperature in terms of the surface
gravity T D �

2�
, with the latter being defined via �AhorrA�

B
hor D � �Bhor. Normalizing

�Ahor such that � D 2� , or equivalently T D 1, it was shown by Wald [254] that the
black hole entropy is the Noether charge:

Sbh D
Z

Ehor

QŒ�hor� : (13.4.18)

This expression follows by interpreting the relation ı�L D 0 as the first law of
black hole mechanics. One can further simplify this expression and give an explicit
formula for the black hole entropy in a general theory of gravity. In general, this
looks like the variation of the gravitational Lagrangian with respect to the Riemann
curvature tensor (keeping the metric unchanged). We refer the reader to [89] for
further detail of the construction.
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To obtain the first law, we also need to know what the definition of the
gravitational energy is. This can be obtained from the Hamiltonian, which is
encoded in the symplectic form. One considers two successive variations of the field
ı1
 and ı2
 and takes their commutator to define the d-form !.ı1
; ı2
/ through:

!.ı1
; ı2
/ D ı2‚.
; ı1
/� ı1‚.
; ı2
/ : (13.4.19)

To obtain the Hamiltonian that generates translations along some vector field �A, we
simply integrate ! over a Cauchy surface Q†, by constraining one of the variations
to be along the generator. All told we can write:

ıH� D
Z

Q†
!.ı
;L�
/ (13.4.20)

Using the variation of the Noether current

ıJŒ�� D ı‚.
; ı�
/� �� d‚.
; ı
/ D !.ı�
; ı
/C d��‚.
; ı
/ (13.4.21)

we obtain upon integrating by parts:

ıH�
ED
Z

@ Q†

�
ıQŒ�� � ��‚.
; ı
/

�
(13.4.22)

We are now in a position to derive the statement of the first law. Consider in
the black hole spacetime a Cauchy slice Q† that extends from the boundary to the
bifurcation surface Ehor. Thence @ Q† D Ehor [ Q†ˇ̌B. We define a variational .d � 2/

form built from the Noether charge adapting the general construction to the horizon
generator:

�.
; ı
; ı�
/ D ıQŒ�hor� � ��hor‚.
; ı
/ (13.4.23)

The choice of the vector field to be the horizon generator ensures that the second
contribution would vanish on the bifurcation surface Ehor. Therefore we can simplify
(13.4.22) and obtain the desired expression for the black hole first law as:

ıEbh D ıH�hor
ED
Z

@ Q†
ıQŒ�hor� D ıSbh : (13.4.24)

We have made explicit that to derive the above, we need to employ the bulk
equations of motion; the first law holds for linear variations about an on-shell
configuration.
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13.4.3 Canonical Energy and Relative Entropy

In Sect. 13.1, we outlined some of the recent constraints derived in gravitational
theories using relative entropy. To explain these, we need to define the idea of
a canonical energy in gravitational systems [230]. We can do this directly from
(13.4.22), which gives the variation of the gravitational Hamiltonian in terms
of the Noether charge and the symplectic potential, if we could only ‘integrate
up’ this equation in the space of variations. However, the second term, ��‚,
involving the explicit diffeomorphism field �A, is not a variational total derivative,
so one is not quite ready to do this in general. As described above, the strategy
works for stationary black hole solutions, since they possess a Killing field which
vanishes at the bifurcation surface and asymptotes to the generator of boundary time
translations.

The upshot is that we need to find situations in which we can express �� ‚ D
ı
�
�� K

�
, with K being a spacetime codimension-2 form (i.e., a d � 1 form in

M). This is a question of finding an appropriate vector field, since K is fixed
by the variational principle of the Lagrangian. Moreover, the precise details of
this field only matter in the vicinity of the boundary of the Cauchy surface,
since in gravitational theories, diffeomorphism invariance allows us to express the
Hamiltonian as a pure boundary term, as is explicit from (13.4.22).

Let us now consider the case in which we no longer consider the entire spacetime,
but rather restrict attention to the entanglement wedge of a ball-shaped region A
on the boundary. We take Q† D R so that @ Q† D A [ EA . We know that

in the vacuum state, the entanglement wedge WE ŒA � D QDŒR � is conformal to
the domain of outer communication of a hyperbolic black hole. In this case, we
clearly have a relation between the gravitational energyH� and the boundary energy-
momentum tensor, or the modular Hamiltonian of the ball. Furthermore, �A is the
extension of the boundary conformal Killing field �� .

For an excited state, not necessarily in the code subspace around the vacuum,
one has a geometry Mex with an extremal surface Eex

A . The idea is to try to come

up with a bulk vector field �exA D O� defined in a neighbourhood of Rex which

resembles a Killing field with a vanishing locus around the extremal surface. The
requirements can be stated as:

O�A ˇ̌B D �AA ; O�A ˇ̌Eex
A

D 0 ;

r.A
O�B/
ˇ̌
z!0

D O.zd/ ; rŒA
O�B� D 2�nAB

(13.4.25)

where nAB is the unit binormal to the extremal surface. These conditions express
our desire to have a vector field that serves as a Killing field in the vicinity of
the homology surface, essentially giving the local neighbourhood of the extremal
surface a structure of a Rindler horizon. It then follows that we can write an
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expression for the canonical gravitational energy as

HO� D
Z

A [EA

�
QŒ O�� � �O�K

�
(13.4.26)

This canonical energy allows us to express the relative entropy in QFT as

S.�exA jj�vacA / D HO�.M/� HO�.AdS/ : (13.4.27)

Furthermore isolating the contribution from the extremal surface and the boundary
to the canonical energy (13.4.26), we have

	SA D 	

Z

EA

�
QŒ O�/� �O�K

�

	KA D 	

Z

A

�
QŒ O�/� �O�K

� (13.4.28)

in which 	 stands for finite differences.

13.4.4 Relative Entropy Constraints

We can now state the various results obtained thus far from considerations of relative
entropy in increasing order of generality.

• The first law of entanglement entropy implies the linearized Einstein’s equations:

ıSA D ıhKAi ” ıE D 0 (13.4.29)

• Positivity of the quantum Fisher information implies that the perturbative
expansion of the canonical energy to quadratic order is non-negative definite.
One may then write a constraint on the quadratic expansion of the

1

2

@2

@�2
S.� C � ı�jj� / D h ı� ; ı� i� � 0

”
Z

R
ddx

�
Tmatter
AB C Tgrav

AB

�
�A d†B

ˇ̌
ˇ
O.�2/

� 0

(13.4.30)

• The positivity of relative entropy in general implies a positive energy theorem;
the canonical energy in the entanglement wedge of a deformed spacetime is
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bounded from below by its value in the vacuum AdS spacetime.

S.�A jj� / � 0 ” HO�.M/ � HO�.AdS/ : (13.4.31)

• Finally, monotonicity of relative entropy results in a statement of the symplectic
flux computed across the homology surface is non-negative definite. A-priori it
seems hard to geometrize this statement, since we have to refer to two different
regions, one of whose domain of dependence is included in the other’s. The
domains of integration for the canonical energy, etc., are quite distinct in the
two cases.

However, we can write a simple integral inequality in a single spacetime
by considering a suitable basis of regions. Let us imagine that we pick a ball-
shaped region A and extend it into a one-parameter family of ball-shaped
regions A Œ��, such that A Œ� D 0� D A and A Œ� D 1� D A0 . The
monotonicity condition should hold for any set of regions in this family as long
as DŒA Œ�1�� � DŒA Œ�2�� for �1 	 �2. Hence we can write a variational form
of the relative entropy monotonicity:

d

d�
S.�exA Œ��jj� Œ��/ � 0 (13.4.32)

These infinitesimal constraints encode all the non-trivial relations implied by the
monotonicity of relative entropy.

It is useful to eschew changes in the region, but instead allowing for the
freedom to fix the region but change the state. This can be achieved by
conformally mapping all the ball-shaped regions A Œ�� back to A0 . Applying
this as an active transformation on the state, we can conformally map �A Œ�� 7!
��A : We then write the differential statement

d

d�
S.�ex;�A jj�� / � 0 (13.4.33)

To express this statement gravitationally, we realize that the conformal
transformation that maps a region A Œ�� to A is achieved by a geometric action
of a vector field C�Œ�� on the boundary. This vector field can be extended into the
bulk quite naturally to OCAŒ��, which in turn implements a bulk diffeomorphism.
We now have two independent changes associated with our configuration. On
the one hand, we have the action of the conformal transformation that rescales
regions through this vector field, and on the other, we have the change associated
with the vector field O�A capturing the excitation about the vacuum defined
in (13.4.25). The gravity dual of monotonicity of relative entropy is then the
statement:

d

d�
S.�ex;�A jj�� / D ı OCHO� � 0 ”

Z

R
!
�
L OCg;LO�g

�
� 0 (13.4.34)



Chapter 14
AdS/CFT and Tensor Networks

To round off our discussion, let us finally describe an interesting method of
geometrically representing quantum entanglement in a many-body system. The
scheme of ideas goes under the name of tensor networks, which captures broadly a
variety of ways to describe wavefunctions of many-body systems in terms of tensors,
which are strung together diagrammatically into a tree graph network structure. The
tensors themselves encode the variational parameters used to optimally represent
ground states of local Hamiltonians. We will be especially interested in a class of
tensor networks which capture quantum critical points (or CFTs), called the multi-
scale entanglement renormalization ansatz (MERA) [255].

Remarkably, the structure of networks of tensors bears some resemblance to the
way in which holographic dualities work. Indeed it was the pictorial similarity upon
which [12] based his arguments about how entanglement should be viewed as a key
ingredient in the emergence of geometry. While one would not go so far as to suggest
that many-body systems are in any real sense holographic, tensor networks have
proved to be very interesting toy models for building intuition about the holographic
map. We will first review the general ideas behind such constructions and then
discuss what lessons we can learn about the AdS/CFT correspondence.

14.1 Tensor Networks

A major issue in studying quantum many-body systems is the fact that their Hilbert
space is exponentially large, as evidenced by the Hilbert space of n qubits. Being that
most of these states are perhaps of little physical interest as ground states, one would
like a computational algorithm that gives an efficient way to study the physically
relevant sub-Hilbert space in the huge total Hilbert space. We may break up the
Hilbert space into potential phases that ground states can be in. Different phases
are characterized by how complex the state is quantum mechanically. This turns
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out to be equivalent to asking how entanglement entropy for subsystems scales as a
function of its size.

The strategy of tensor network methods for finding ground states is to choose an
appropriate class of many-body quantum entanglement by employing a graphical
representation. One picks a relatively small number of parameters to specify the
states of interest and constructs a good approximation of the wavefunction by
implementing a variational principle to minimize the energy. Such a graph can be
viewed as a collection of tensors contracted in some fashion. The graph is simply
a representation of the index contraction scheme. Hence in a tensor network a
quantum wavefunction is expressed in terms of a collection of tensors. It is relatively
easy to write down a tensor network. One can, for instance, write down a toy state
j i for a 4-particle system:

j i D
dim.H/X

a;b;c;dD1

�X

eD1
Tabe Tecd jai˝ jbi˝ jci˝ jdi ; (14.1.1)

where � is a positive integer called the bond dimension. It is unrelated to the
dimension of the total Hilbert space, which may be much larger than �3 entries
in the tensor which are the variational parameters that need to be optimized.

The simplest example of practical tensor networks is the matrix product state
(MPS), which can describe ground states of gapped quantum systems in one spatial
dimension very successfully; we refer the reader to [256] for an excellent review.
This is also equivalent to so-called density matrix renormalization group (DMRG)
[257]. To explain the idea of MPS, let us consider a quantum spin chain with n spin-
1
2

spins. A quantum state j‰i in the 2n-dimensional Hilbert space is defined in terms
of the superposition coefficients c.�1; �2; � � � ; �n/ in the standard fashion:

j‰i D
X

�1;�2;��� ;�n
c.�1; �2; : : : ; �n/ j�1; �2; � � � ; �ni; (14.1.2)

where �i D 0; 1, corresponding to the spin up and down states, respectively.
In MPS, we can describe the coefficient c.�1; �2; � � � ; �n/ as a product of

tensors M˛ˇ.�/ with three indices. This tensor M˛ˇ.�/ has one physical spin index
(indicated in parenthesis) and two auxiliary indices ˛; ˇ that take values 1; 2; � � � ; �.
If we fix � D 0; 1, then we can regard M as a matrix. The basic ansatz of MPS is
given by

c.�1; �2; � � � ; �n/ D Tr .M.�1/M.�2/ � � � M.�n// : (14.1.3)

This is schematically described in Fig. 14.1. When two legs of tensors are connected,
we contract the indices between them. Note that as long as we keep the size � of
the matrix finite (as we scale up the system), the ansatz (14.1.3) cannot express all
possible states, though we can expect a reasonable approximation by choosing � to
be large enough. The final step of the variational method involves determination of



14.1 Tensor Networks 223

σ0 σ1 σ2 σ3 σ4 σn σn

γA
αi

Mαβ(σ)
αi+1

σ

αi = 1, 2, · · · , χ

σi ∈ {0, 1}

|Ψ〉 =
∑

σi
Tr (M(σ0) M(σ1) · · · M(σn)) |σ0 σ1 · · · σn〉

A

Fig. 14.1 The matrix product state (MPS) for a quantum spin chain. One can estimate entangle-
ment entropy for subregions in this state by examining the minimal cuts in the graph network

the parameters, which are given by the components of the matrices M.�/, achieved
by minimizing the total energy. This is essentially the strategy of MPS. The pay-off,
of course, is that we have achieved a vast simplification of the problem: the ansatz
has only 2 �2 parameters, while originally 2n coefficients were necessary to fix the
state.

By using higher rank tensors and considering more general networks, the MPS
can be generalized to higher-dimensional gapped systems, which is called projected
entangled-pair states (PEPS) [258, 259].

To see why MPS works for gapped systems in one space dimension ds D 1,
let us estimate the entanglement entropy SA for the MPS state when we divide the
total system into a finite interval A and its complement Ac. The reduced density
matrix �A can at most have rank �2, which corresponds to the number of links of
the network that we need to cut across A and Ac, and therefore

SA 	 2 log�: (14.1.4)

The network diagram can be used directly to bound SA. As shown in Fig. 14.1,
we can consider a curve �A anchored on the two endpoints of the interval A. It
demarcates the bulk of the network into parts that belong to A and its complement
Ac. Since the subregions are only entangled across their common edge, we simply
need to enumerate the number of links �A traverses. As a link contributes at most
log�, we learn that, in general,

SA 	 min
�A

	
# Intersections between �A and the network



log� : (14.1.5)

For a single connected interval in ds D 1, the number of intersections is at most two,
and so we recover (14.1.4).

In tensor networks, the entanglement entropy SA can be arbitrarily large if we
increase the auxiliary dimension �. However, it does not scale with the length L of
the interval A. This is enough to describe ground states of gapped one-dimensional
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systems, for which the area law of entanglement entropy means that SA just counts
the number of endpoints of A.

On the other hand, we know well that the entanglement entropy at a one-
dimensional quantum critical point (i.e., in a CFT2) is proportional to log `A. Thus
the bound (14.1.4) shows that the MPS ansatz is not enough to explain the large
quantum entanglement required to study quantum critical systems. This motivates
us to consider a different tensor network MERA, which we now turn to.

14.2 MERA

MERA (multi-scale entanglement renormalization ansatz) is a scheme for the real-
space RG from the viewpoint of scale-dependent wavefunctions [255, 260]. It
attempts to efficiently capture the Kadanoff spin block technique by directly coarse-
graining the degrees of freedom with a novel twist. This should be contrasted to the
more familiar Wilsonian RG, which we typically have learnt to implement at the
level of effective actions.

Following the idea of real-space RG in classical statistical systems, we repeat the
coarse-graining procedure of the spin chain by blocking a set p of quantum spins into
one, iteratively, until we reach the single composite spin. A priori this map doesn’t
have to relate similar spins; we can well decide that the new spin Hilbert space is
of a different dimension than that of the individual spins prior to the blocking. The
operation for blocking p spins into a single one is a coarse-graining operation. We
describe it by a rank .pC1/-tensor which we view as a map from the coarse-grained
spin to the fine-grained ones, viz.,

W W H0
spin ! H˝p

spin ; (14.2.1)

This map is referred to as an isometry, for it is required to preserve the norm of the
state in H0

spin. While the nomenclature may seem confusing, in light of the fact that
isometries refer to symmetries in general relativity, they at least share the common
feature that some measure of distance is left fixed. In any event, we require that

W�W D IH0

spin
; W W� D PH˝p

spin
(14.2.2)

where PV is the projector onto the vector space V , satisfying P2
V D PV . Realize that

W.n1n2���np/m is a tensor which we are viewing as a matrix of size .dim.Hspin//
p �

dim.H0
spin/. For practical implementation, one typically finds the choice p D 3 to be

optimal.
The tensor network of MERA for a one-dimensional spin chain is explicitly given

in Fig. 14.2. The horizontal layers describe the quantum state at each successive
length scale so that it respects the scale symmetry. Let us define a non-positive
integer u for each layer. u D 0 refers to initial configurations of the spin chain,
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u = −1

u = −2

u = −3

A

γA

u

(�A)
u = 0

spin σi

coarse-grainer

relgnatnesid relgnatnesid

Fig. 14.2 A cartoon for a MERA tensor network illustrating the general idea of applying
disentanglers to remove short distance entanglement and thence applying the isometries/coarse-
grainers to block spins

and the first step of coarse-graining brings us to the chain at u D �1, etc. If we start
with a spin chain with n spins, after juj steps of coarse-graining, the number of spins
becomes pu n. Therefore after logp n steps, we reduce down to a single spin. This is
essentially the quantum version of Kadanoff blocking.

Taking into account only the coarse-graining, however, fails to result in a good
approximation of the correct ground state for quantum critical theories in ds D 1.
The situation simply gets worse in higher dimensions. To see why, let us estimate
how much data we need to retain after n steps of coarse-graining. For a non-critical
system in one spatial dimension ds D 1, we know that entropySA remains bounded
by a finite value, independent of the size of the subsystem as in (14.1.4). We may
then roughly take � to be given by the maximal value of the entanglement entropy
and get a good approximation. For a critical system in ds D 1, we have the famous
logarithmic scaling SA � c

3
log `A, so the bond dimension would be required to

go as .`A/
c
3 . This amounts to � � e� c

6 juj log p after juj steps, which renders the
approximation useless. In higher dimensions, one can use the area law scaling of
entanglement entropy to see that there is a super-exponential growth in the number
of coarse-graining steps.

To resolve this issue, MERA employs another operation called the disentangler.
The idea is to remove the entanglement between neighbouring blocks as one
proceeds upwards in the coarse-graining transformation. To do so, one has to act
with a unitary transformation on neighbouring blocks to remove the entanglement
present. Rather than act on all the blocks, one chooses to act with a unitary
transformation on the two neighbour sites at the edges of their respective blocks.
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This can be implemented by the unitary transformation U W Hspin ˝Hspin ! Hspin ˝
Hspin with U U� D U�U D IHspin . By reducing the quantum entanglement between
the nearest neighbour spins from the value contained in the initial microscopic state,
one ensures that the subsequent coarse-grained spins are not carrying short-range
entanglement.

If we assume that the indices of the tensors W and U range over � values, as in
the bond dimension of the previously discussed tensor, then one can estimate the
entanglement entropy SA for an interval length `A . We find from (14.1.5) that it is
bounded for a critical system in ds D 1

SA 	 2 log� log2 `A : (14.2.3)

As illustrated in Fig.14.2 ,this behaviour follows by counting how many coarse-
graining steps and thus how many links we need to traverse in the network. The
result (14.2.3) is non-trivially consistent with the expected behavior in CFT2.

As described, the two main elements characterizing the MERA tensor network
are the isometries implementing coarse-graining and the disentanglers. A general
MERA network does not allow for a simple presentation of the disentangler and
isometries; they are to be determined numerically. It does however turn out that
an analytic scale-invariant MERA for a one-dimensional free fermion was recently
found [261] in terms of the Pauli spin operators.

While we have described the coarse-graining perspective on MERA, the network
Fig. 14.2 can also be viewed in a quantum operational sense as a state preparation
mechanism. In this picture, we start at early ‘time’ u D �1 with a completely
disentangled state of spins. We can think of these as the solitary spin left behind
at the end of the coarse-graining along with a bunch of spectator spins. We feed
a set of these spectators into the isometry in reverse, fusing them into spins in
the larger space used. To achieve this, we will have to improve W to take in
more inputs, but this is trivially done, with spectators. The disentanglers running
in reverse act as entanglers; they take the unentangled spins and build the necessary
short distance entanglement into them. When we have run through all the levels,
we will have constructed explicitly the microscopic ground state of a many-body
Hamiltonian. Thus starting with a single spin and a bunch of ancillary spins, we
get to build the true quantum wavefunction. This provides a constructive quantum
operational perspective on MERA, which has the virtue of being generalizable to
higher dimensions.

14.3 AdS/CFT and Tensor Networks

There is an intriguing similarity between the MERA network and the AdS/CFT
correspondence. In [12, 262], it was conjectured that the MERA formulation
of CFTs is equivalent to the AdS/CFT correspondence by identifying the extra
coordinate u as the extra dimension. This pretty much follows from the scale/radius
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duality. The canonical Fefferman-Graham radial coordinate z used to express the
Poincaré-AdS (4.2.5) metric is simply related via

z D 2�u � ; (14.3.1)

with � being some fiducial UV scale. One might be thus tempted to interpret the two-
dimensional MERA network in Fig. 14.2 as a discretization of a constant time slice
of AdS3, viz., a two-dimensional hyperbolic space H2. Further qualitative support
for this conjecture comes from the fact that the estimation of the entanglement
entropy in the MERA representation of quantum ground states is given by min-
imizing the intersections between bulk curves �A and entangling bonds (14.1.5).
This is, of course, the cornerstone of our discussion as encoded in the holographic
entanglement entropy proposal.

However, the quantum operational perspective of a MERA network allows for
an alternate interpretation. In this way of viewing the network, one can posit the
existence of a causal structure. This is because there is a definite coarse-graining
direction and the RG transformation can be viewed as setting up an arrow of time.
This suggests another interpretation of the network in terms of de Sitter space [263].
Partial evidence for this was put forward in [264, 265]. The authors employ the idea
that one should consider the space of entanglement entropies for various subregions
(say, for simplicity, on a fixed time slice). This space is called the kinematic space,
and it is proposed that it admits an auxiliary Lorentz signature metric obtained by
considering derivatives of the entanglement entropy S.x1; x2/ with respect to the
endpoints x1 and x2. This can be verified in CFT2 using the familiar expression for
the single-interval entanglement entropy, to obtain

ds2 D @1@2S.x1; x2/ dx1 dx2 D c

12

dx1 dx2
sin2

�
x1�x2
2

� : (14.3.2)

The reader can check that this is the metric of a positively curved, maximally
symmetric Lorentzian spacetime with x1; x2 being light-cone coordinates, viz., the
two-dimensional de Sitter geometry dS2. One can provide an interpretation of this
quantity in terms of conditional mutual information.

The holographic dictionary relates these quantities to lengths of geodesics. One
can therefore simply study the space of boundary-anchored geodesics in H2, which
is a metric space in its own right and studied in the area of integral geometry. Again
one finds unsurprisingly that the metric happens be that of dS2. The interpretation
accorded is that the AdS spacetime is related non-locally into the MERA; the latter
encodes the space of all entanglement patterns. Whilst intriguing, there are various
subtleties in giving a simple entanglement-based picture universally. The kinematic
space is always defined in terms of entanglement entropy (in higher dimensions
perhaps by restricting the choice of regions to be of a particular shape), but the
mapping to boundary-anchored extremal surfaces is less transparent in the generic
case.
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Interpreting the MERA network in terms of the geometry of spatial sections in
the bulk leaves unexplained why the bound (14.2.3) is saturated to agree with the
known expression, SA / log `A in CFT2. A further related issue is the fact that in
the network, one does not recover true bulk locality. The network is coarse on the
AdS scale in this interpretation and only demonstrates bulk locality on scales larger
than `AdS [141, 266]. There is no evidence that sub-AdS scale locality is achievable,
nor is there a clear picture of the constraints described in Sect. 13.1. So at this level,
the tensor network’s relation to holography is an interesting trope, awaiting a deeper
understanding.

Nevertheless, many interesting developments in the past couple of years have
exploited this idea to provide very interesting toy models of holography. In [251],
a network which respects the discrete conformal symmetry and the saturation of
bound (14.1.5) was written down. This work was inspired by the connections
between quantum error correction and holography explained in [250]. Its key feature
is that all tensors in the network were perfect tensors. These are tensors wherein
the tensor is invariant under exchange of any two indices, and contraction of half
the indices between a pair of tensors results in the identity. The network in this
case was based on a tiling of the hyperbolic plane and the perfect tensor structure,
which turned out to guarantee that the bound on entanglement entropy (14.1.5) gets
saturated for single-interval subsystems. Inspired by this construction, [267, 233]
built a network of random tensors, for which the saturation of the entropy bound is
true even for multiple intervals. However, these models are still far from realistic
for holography. They describe quantum states with a flat entanglement spectrum,
i.e, the reduced density matrix is maximally entangled. This is extremely different
from the true vacuum of a CFT. We can also modify these tensor networks so that
we can realize the bulk state—this development was initiated in [268]. Building on
this, [269] noted a correspondence between surfaces in gravitational theories and
quantum states in dual quantum many-body systems, in a generalization of the idea
of holography.

14.4 Continuous MERA

The tensor networks we have been discussing are all discrete networks built for
lattice systems. For applications to quantum field theories, we would naturally like
to work in the continuum and obtain a realization of MERA. One such formulation,
is constructed in [270], goes by the name of continuous MERA (or cMERA). This
formulation naturally leads to a speculation of a connection between the AdS/CFT
and cMERA [271]. One might a-priori expect that this helps us to establish a better
connection between tensor networks and AdS/CFT; some of the issues related in
Sect. 14.3 originate from the discretized lattice regularization.

Consider a QFT with a Hamiltonian H, and a UV energy scale cut-offƒ D 1
�
. As

in MERA, we perform the coarse-graining and disentangling operations iteratively.
The quantum state at scale u is j ‰.u/i, with the scale parameter u chosen such



14.4 Continuous MERA 229

that the momentum-shell is restricted to jkj 	 ƒ eu with u 2 R�. As before, u
specifies the layers along the RG flow with the proviso that we keep the Hilbert
space dimension intact under the process. The states j ‰.u/i, for any u, are in the
fixed Hilbert space of the QFT with rigid UV cut-off as chosen. This is just for
a convenience of the formulation. One can interpret this by allowing insertions of
trivial ancillary states following the application of an isometry to coarse-grain. We
let the UV and IR states be

j‰.uIR/i � j�i ; uIR ! �1 ;

j‰.uUV/i � j‰i ; uUV D 0
(14.4.1)

The UV state j ‰i describes the original QFT ground state, while j �i is defined
to be a trivial state in that there is no quantum entanglement between any spatial
regions in that system, i.e., SA D 0 for any subsystem A defined in a real space.
This IR state can be explicitly constructed in free field theories [270]. For general
CFTs, the IR state has been identified as a boundary state (or Cardy state) with an
appropriate regularization in [146].

The quantum state j ‰.u/i is related to the UV and IR states by a unitary
transformation:

j‰.u/i D U.u; uIR/ j�i ; j‰i D U.0; u/ j‰.u/i : (14.4.2)

We can express the unitary transformation as

U.u1; u2/ D P
�

exp

�
�i
Z u1

u2

.K.u/C L/ du

��
; (14.4.3)

where K.u/ and L are the continuum limit expressions of the disentangler and the
coarse-graining in the cMERA, respectively [270]. P denotes path-ordering which
puts all operators with smaller u to the right.

Now we require that the IR state j �i be invariant under the coarse-graining
transformation L or equivalently under non-relativistic scale transformation:

L j�i D 0: (14.4.4)

This is because the IR state should not have any real space quantum entanglement
and thus each spacial point behaves independently. On the other hand, as with the
disentanglers in MERA, we choose the operator K.u/, which is a local operator
around the scale ƒ, so that it generates quantum entanglement for the modes below
the cut-off at each step.

It is helpful to rewrite U in an ‘interaction picture’:

U.u1; u2/ D e�i u1 L P
�
e�i

R u1
u2

OK.u/ du� ei u2 L; (14.4.5)
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where we defined an isometry conjugated disentangler

OK.u/ D ei uL K.u/ e�i u L ; (14.4.6)

which is local around the scaleƒ eu and serves to create the necessary entanglement
for lower scales, viz., jkj 	 ƒ eu. We can analogously define the state jˆ.u/i [271]
also incorporating a coarse-grained evolution as

jˆ.u/i D ei u L j‰.u/i D P
�
e�i

R u
uIR

OK.s/ ds j�i
�
: (14.4.7)

This state j ˆ.u/i is constructed such that as u varies from �1 to u, we add the
entanglement by the operator OK.u/ for the scale jkj 	 ƒ eu.

14.4.1 cMERA for Free Scalar Fields

To expose more details of cMERA, it is helpful to look at an example. We will
describe how it works for a free scalar field theory, closely following the formulation
in [270] and its generalization to a generic dispersion relation in [271].

Let us consider a free scalar field theory in d-dimensions with the general
dispersion relation E D �k. The Hamiltonian is given in a momentum basis as

H D 1

2

Z
dd�1k

�
�k ��k C �2k 
k 
�k

�
: (14.4.8)

For example, a massive relativistic scalar field is obtained by setting �k Dp
k2 C m2. The field 
k and its momentum �k are expressed in terms of the creation

and annihilation operators


k D ak C a��kp
2 �k

; �k D
p
2 �k

 
ak � a��k

2 i

!
: (14.4.9)

The commutation relation between ak and a�k takes the standard form:

Œak; a
�
p� D ıd�1.k � p/ ” Œ
k; �p� D i ıd�1.k C p/: (14.4.10)

Let us first define the IR state j�i by demanding that it satisfy

�p
� 
.x/C ip

�
�.x/

�
j�i D 0; (14.4.11)
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in which the parameter � is a constant, which is taken to be on the order of the UV
cut off ƒ, as we will see later. It satisfies

h�j
k 
k0 j�i D 1

2�
ıd.k C k0/ ; h�j�k �k0 j�i D �

2
ıd.k C k0/:

(14.4.12)

In terms of creation/annihilation operator basis, j�i is defined by the requirement

.˛k ak C ˇk a
�
�k/ j�i D 0 ;

˛k D 1

2

�r
�

�k
C
r
�k

�

�
; ˇk D 1

2

�r
�

�k
�
r
�k

�

�
:

(14.4.13)

The IR state j�i is invariant under the coarse-graining transformation L:

e�i u L 
ke
i u L D e� d�1

2 u 
ku ; e�i u L �ke
i u L D e� d�1

2 u �ku : (14.4.14)

where ku � e�u k for notational simplicity. We emphasize that L is different from
the more familiar relativistic scale transformation viz., dilatation D, which is instead
defined by different scaling of the field and its conjugate momentum

e�i uD 
k e
i uD D e� d

2 u 
ku ; e�i u D �ke
i uD D e� d�2

2 u �ku : (14.4.15)

The disentangler K.u/ is defined in terms of a kernel function g.k; u/ to be

K.u/ D 1

2

Z
dd�1k g.k; u/

�

k ��k C �k 
�k

�
: (14.4.16)

We assume that the function g.k; u/ is given by

g.k; u/ D �.u/ ‚

�
1 � jkj

ƒ

�
; (14.4.17)

and we use a Heaviside step function ‚.x/ as our cut-off function to remove the
higher energy modes. �.u/ is a real valued function of the scale coordinate. The
interaction picture (14.4.7) disentangler with these definitions can be checked to be

OK.u/ D 1

2

Z
dd�1k g.ku; u/

�

k ��k C �k 
�k

�

D i

2

Z

jkj�ƒ eu
dkd�1 �.u/

�
a�ka

�
�k � ak a�k

�
:

(14.4.18)

The unitary transformation from the UV state, which is the vacuum of the free
scalar theory, to the IR state given by (14.4.13) is an example of a Bogoliubov
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transformation. Therefore, from this condition, it is straightforward to identify the
function �.u/ as follows:

�.u/ D 1

2

� jkj
�k

@�k

@jkj
� ˇ̌
ˇ̌
ˇjkjDƒ eu

: (14.4.19)

In particular, for the relativistic free scalar field theory with a mass m, we obtain

�.u/ D 1

2

e2 u

e2 u C m2=ƒ2
; � D

p
ƒ2 C m2: (14.4.20)

Note that even though this cMERA was intended to find an approximate ground
state, in this particular implementation for a free field, the ansatz with (14.4.19)
coincides with the exact ground state.

From (14.4.20), we learn that in the massless limit, we have the constant value
�.u/ D 1

2
. This shows that the total operation K CL at each scale coincides with the

relativistic dilatation D of the CFT, as expected. In the massive case m > 0, we have
�.u/ ' 1

2
in the UV limit. On the other hand, in the IR limit, we have �.u/ ! 0

corresponding to the absence of degrees of freedom in the IR.

14.4.2 cMERA for Excited States in Free Scalar Field Theories

It is instructive to study a class of excited states j‰exi in the cMERA given by the
coherent states:

.Ak ak C Bk a
�
�k/ j‰exi D 0; (14.4.21)

where we normalize

jAkj2 � jBkj2 D 1: (14.4.22)

Our definition of .Ak;Bk/ has an ambiguity in the phase factor. The ground state
corresponds to setting Bk D 0.

The UV state j ‰exi is related to the unentangled IR state j �i via the unitary
transformation

j‰exi D P
�

exp

�
�i
Z 0

uIR

OK .u/ du
��

j�i; (14.4.23)
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as in (14.4.7), and we assume the following disentangler

OK .u/ D i

2

Z
ddk

�
gk.u/ a

�
ka
�
�k � g�

k .u/ aka�k

�
; (14.4.24)

where the complex function gk.u/ is still taken to be of the form (14.4.17) by
allowing �.u/ to be complex valued. This precludes us recasting OK .u/ into the
form given in (14.4.18).

To proceed, it is useful to look at how the unitary transformation in (14.4.23) acts
on the creation and annihilation operators. Its action can be expressed as

U.u; uIR/

 
ak
a��k

!
U.u; uIR/

� D Mk.u/ �
 

ak
a��k

!
: (14.4.25)

The matrix Mk.u/ can be parameterized in terms of the function gk.u/ and satisfies

dMk.u/

du
D �Mk.u/ � Gk.u/ ; Gk.u/ D

�
0 gk.u/

g�
k .u/ 0

�
(14.4.26)

It has unit norm and preserves the commutation relations between ak and a�k .
Eventually, for the UV state j‰exi, we find that .Ak;Bk/ in the definition (14.4.21)

is related to the IR values .˛k; ˇk/ by

.Ak;Bk/ D .˛k; ˇk/ � Mk.0/: (14.4.27)

Since the ground state of the cMERA corresponds to Ak D 1 and Bk D 0, and thus
we find from (14.4.27)

Mk.0/ D
�
˛k �ˇk

�ˇk ˛k

�
: (14.4.28)

If we assume that gk.u/ takes only real values, i.e., gk.u/ D .gk.u//� D
�.u/�.jkje�u=ƒ/, then we find

˛k D cosh

�Z u

uIR

du gk.u/

�
; ˇk D sinh

�Z u

uIR

du gk.u/

�
(14.4.29)

Matching to the UV state in the limit u ! 0, we can motivate the solution

e
R 0
uIR

du gk.u/ D
q

�

�k
, consistent with (14.4.20).

This framework was applied to study translationally-invariant excited states,
such as global quantum quenches in [271, 144]. For example, if we consider the
description of a global quantum quench described by boundary state (7.1.2), the
function jg.u/j behaves in a manner suggestive of a geometric interpretation. The
intuition is that e�u=ƒ, which is the inverse of the momentum cut off at scale u,
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should be realized as the radial coordinate z of putative AdS spacetime. At a first
glance, this function could be viewed as a metric deformation in the scale direction:
one can cook up a geometry wherein the proper size of the spacetime on which the
field theory lives is given by g.u/. It is curious that the free field model displays
features that are reminiscent of geometry. Clearly more needs to be done in this
context; it would be fantastic if we could learn to implement the entanglement
renormalization ansatz for interacting field theories.
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